Section B

Each of Questions $\mathbf{0 7}$ to $\mathbf{3 1}$ is followed by four responses, A, B, C and D.
For each question select the best response.

Only one answer per question is allowed.
For each question, completely fill in the circle alongside the appropriate answer.

CORRECT METHOD
WRONG METHODS \square
If you want to change your answer you must cross out your original answer as shown.
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do not use additional sheets for this working.
\qquad

| 0 | 7 |
| :--- | :--- | Which is approximately equal to 3 kW h ?

A $3 \times 10^{3} \mathrm{~J}$
B $1 \times 10^{4} \mathrm{~J}$

C $2 \times 10^{5} \mathrm{~J}$

D $1 \times 10^{7} \mathrm{~J}$

0	8	Which is the shortest distance?

A $10^{-19} \mathrm{Gm}$ \square

B $10^{-14} \mathrm{~km}$ \square

C $10^{-4} \mu \mathrm{~m}$ \square

D $10^{7} \mathrm{fm}$ \square

0	9	The gravitational force is one of the four fundamental forces.

The ticks in the table match particles with the other fundamental forces.
In which row is the particle matched to the only other fundamental forces it experiences?
[1 mark]

	Particle	Electromagnetic force	Weak nuclear force	Strong nuclear force
A	μ^{+}	\checkmark	\checkmark	
B	\bar{p}	\checkmark		\checkmark
C	π^{0}	\checkmark	\checkmark	\checkmark
D	v_{e}		\checkmark	\checkmark

| $\mathbf{1}$ | $\mathbf{0}$ The proton number of uranium is 92 and the proton number of radon is 88 |
| :--- | :--- | Which series of decays turns a uranium nucleus into a radon nucleus?

A $\alpha+\beta^{-}+\beta^{-}+\alpha+\alpha$ \square
B $\beta^{-}+\beta^{-}+\alpha+\beta^{-}+\alpha$

C $\alpha+\alpha+\alpha+\alpha+\beta^{-}$ \square
D $\beta^{-}+\beta^{-}+\beta^{-}+\beta^{-}+\alpha$

0	2	Figure 1 shows apparatus used to investigate the properties of microwaves.

The microwaves from the transmitter \mathbf{T} are vertically polarised and have a wavelength of about 3 cm .
The microwaves are detected at the receiver by a vertical metal rod \mathbf{R}.
Figure 1

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Explain how the apparatus can be used to demonstrate that the waves from \mathbf{T} are |
| :--- | :--- | :--- | vertically polarised.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figures $\mathbf{2 a}$ and $\mathbf{2 b}$ show \mathbf{T} and \mathbf{R} and two different positions of a metal plate \mathbf{M} that reflects microwaves. \mathbf{M} is vertical and parallel to the direct transmission from \mathbf{T} to \mathbf{R}.

Figure 2a
view from
above

Figure 2b
view from above

not to scale

In an experiment, \mathbf{T} and \mathbf{R} are about two metres apart. \mathbf{M} is moved slowly towards \mathbf{X}. Figure $\mathbf{2 a}$ shows the initial position of \mathbf{M}.
Figure 2b shows \mathbf{M} when it has been moved a few centimetres.
The arrowed lines show the path of waves that reach \mathbf{R} directly and the path of waves that reach \mathbf{R} by reflection from \mathbf{M}.

[4 marks]
\qquad
Question 2 continues on the next page

Figure 3 shows an arrangement used in a different experiment to try to determine the

Figure 3

A double-slit arrangement is placed between \mathbf{T} and \mathbf{R}.
The initial position of \mathbf{R} is the same distance from each slit and is 0.45 m from the midpoint of the two slits.
$A B$ is a line perpendicular to the line between \mathbf{T} and the initial position of \mathbf{R}.
\mathbf{R} can be moved 0.25 m towards \mathbf{A} and 0.25 m towards \mathbf{B} along $\mathbf{A B}$.
The two slits act as two coherent sources with a separation of 0.12 m .

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Suggest why Young's double-slit equation should not be used to determine the |
| :--- | :--- | :--- | :--- | wavelength.

\qquad
\qquad
\qquad
\qquad

| 0 | 2 | 4 |
| :--- | :--- | :--- | The wavelength is known to be about 3 cm.

Deduce whether this practical arrangement is suitable for a determination of a value for the wavelength.

Turn over for the next question

| 0 | 3 |
| :--- | :--- | of a straight optical fibre.

This ray undergoes total internal reflection at the core-cladding boundary. A ray that enters the optical fibre at an angle greater than A will only be partially reflected at the core-cladding boundary.

Figure 4

Table 2 shows some properties of the optical fibre.
Table 2

	Refractive index
cladding	1.41
core	1.47

0	3	1	Calculate the speed of the light ray in the optical fibre.

\qquad $\mathrm{m} \mathrm{s}^{-1}$

0	3	2

$$
A=
$$

\qquad degrees

| 0 | 3 | 3 | A ray is incident on the optical fibre at angle A. The optical fibre is now bent, as |
| :--- | :--- | :--- | :--- | shown in Figure 5.

Figure 5

Draw, on Figure 5, what happens to the ray within the optical fibre.
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

