| 1 | 4 |
| :--- | :--- |
| A monochromatic light wave travels from glass into air. |  |

Which row shows what happens to the wavelength, speed and photon energy?
[1 mark]

|  | Wavelength | Speed | Photon energy |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| A | increases | increases | increases | |  |  |
| :---: | :---: |
| B | does not change |
| decreases | does not change |
| C | does not change |
| D | increases |


| 1 | 5 |
| :--- | :--- | A wave travels across the surface of water.

The diagram shows how the displacement of water particles at the surface varies with distance.


Which row correctly describes both $w$ and $z$ ?

|  | $w$ | $z$ |  |
| :---: | :---: | :---: | :---: |
| A | amplitude | wavelength | $\bigcirc$ |
| B | half-amplitude | period | 0 |
| C | half-amplitude | wavelength | $\bigcirc$ |
| D | amplitude | period | $\bigcirc$ |


| 1 | 6 |
| :--- | :--- | at $24 \mathrm{~cm} \mathrm{~s}^{-1}$ on water. The amplitude of the wave is 2.0 cm and the frequency is 4.0 Hz .



Which statement is correct?

A The phase difference between particles at $\mathbf{P}$ and $\mathbf{S}$ is $\frac{\pi}{2} \mathrm{rad}$. $\square$
B The distance between $\mathbf{P}$ and $\mathbf{R}$ is 6.0 cm .
C The particle velocity at $\mathbf{Q}$ is a maximum.
D Particles at $\mathbf{P}$ and $\mathbf{R}$ are in phase.
Dartices at Pand Ray in
$17 \mathbf{7}$ Unpolarised light travels through two polarising filters $\mathbf{X}$ and $Y$ and is then incident on a screen. When $\mathbf{X}$ and $\mathbf{Y}$ are arranged as shown, there is a maximum intensity on the screen.
$\mathbf{X}$ is held stationary but $\mathbf{Y}$ is rotated in a plane at right angles to the beam so that $\theta$ increases.


What are the next three values of $\theta$, in rad, for which the beam hits the screen with maximum intensity?

A $\frac{\pi}{2}, \frac{2 \pi}{2}, \frac{3 \pi}{2}$


B $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}$


C $\pi, 2 \pi, 3 \pi$


D $2 \pi, 4 \pi, 6 \pi$ $\square$

| 1 | 8 | Stationary waves are set up on a rope of length 1.0 m fixed at both ends. |
| :--- | :--- | :--- |

Which statement is not correct?

A The first harmonic has a wavelength of 2.0 m .
B The midpoint of the rope is always stationary for even-numbered harmonics.
C A harmonic of wavelength 0.4 m can be set up on the rope.
D There are five nodes on the rope for the fifth harmonic.

| 1 | 9 | Monochromatic light is incident normally on a diffraction grating that has |
| :--- | :--- | :--- |

$4.50 \times 10^{5}$ lines $\mathrm{m}^{-1}$.
The angle between the second-order diffraction maxima is $44^{\circ}$.
What is the wavelength of the light?

A 208 nm
0
B 416 nm
0
C 772 nm 0

D 832 nm $\square$

| $\mathbf{0}$ | $\mathbf{3}$ A student investigates the interference of sound waves using two loudspeakers, |
| :--- | :--- | $\mathbf{P}$ and $\mathbf{Q}$, connected to a signal generator (oscillator). Each loudspeaker acts as a point source of sound.

Figure 3 shows the arrangement.
Figure 3


Point $\mathbf{O}$ is the midpoint between $\mathbf{P}$ and $\mathbf{Q}$.

| 0 | 3 | 1 |
| :--- | :--- | :--- |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| $\mathbf{0}$ | $\mathbf{3} .2$ The student faces the two loudspeakers at point $\mathbf{A}$. Point $\mathbf{A}$ is at equal distances from |
| :--- | :--- | :--- | :--- | $\mathbf{P}$ and $\mathbf{Q}$.

He then moves to point $\mathbf{B}$, at right angles to the line $\mathbf{O A}$, still facing the two loudspeakers.
As his head moves from $\mathbf{A}$ to $\mathbf{B}$ the amplitude of the sound wave he hears decreases and then increases. The amplitude starts to decrease again as he moves beyond $\mathbf{B}$.

Explain why the variation in amplitude occurs as he moves from $\mathbf{A}$ to $\mathbf{B}$.
$\qquad$

Question 3 continues on the next page

| 0 | $\mathbf{3} .3$ | 3 |
| :--- | :--- | :--- |


| separation of the two loudspeakers | $=0.30 \mathrm{~m}$ |
| :--- | :--- |
| distance $\mathbf{O A}$ | $=2.25 \mathrm{~m}$ |
| distance from $\mathbf{A}$ to $\mathbf{B}$ | $=0.95 \mathrm{~m}$ |

Show that the path difference for the sound waves from the two loudspeakers to point $B$ is about 0.1 m .

| 0 | 3 | 4 |
| :--- | :--- | :--- | The frequency of the sound wave is 2960 Hz .

Calculate the speed of sound from the student's data.

| 0 | 6 |
| :--- | :--- |$\quad$ A loudspeaker cone is driven by a signal generator (oscillator).

Figure 8 shows the variation of displacement with time $t$ for a point $P$ at the centre of the cone. $\mathbf{P}$ is oscillating with simple harmonic motion.

Figure 8


| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{1}$ State the time, in milliseconds, when $\mathbf{P}$ is moving at its maximum positive velocity... |
| :--- | :--- | :--- |

$\qquad$ ms

| 0 | 6 | 2 |
| :--- | :--- | :--- |
| Calculate the maximum acceleration of $\mathbf{P}$.....$~$ |  |  |


| 0 | 6 | 3 | $T h e ~ l o u d s p e a k e r ~ c r e a t e s ~ v a r i a t i o n s ~ i n ~ p r e s s u r e ~ a n d ~ p r o d u c e s ~ a ~ s o u n d ~ w a v e ~ i n ~ t h e ~ a i r ~$ |
| :--- | :--- | :--- | :--- | around it.

State the type of wave produced and describe the motion of the particles in this type of wave.

Do not wrise outside the box
$\qquad$
$\qquad$ $\longrightarrow$

