

6

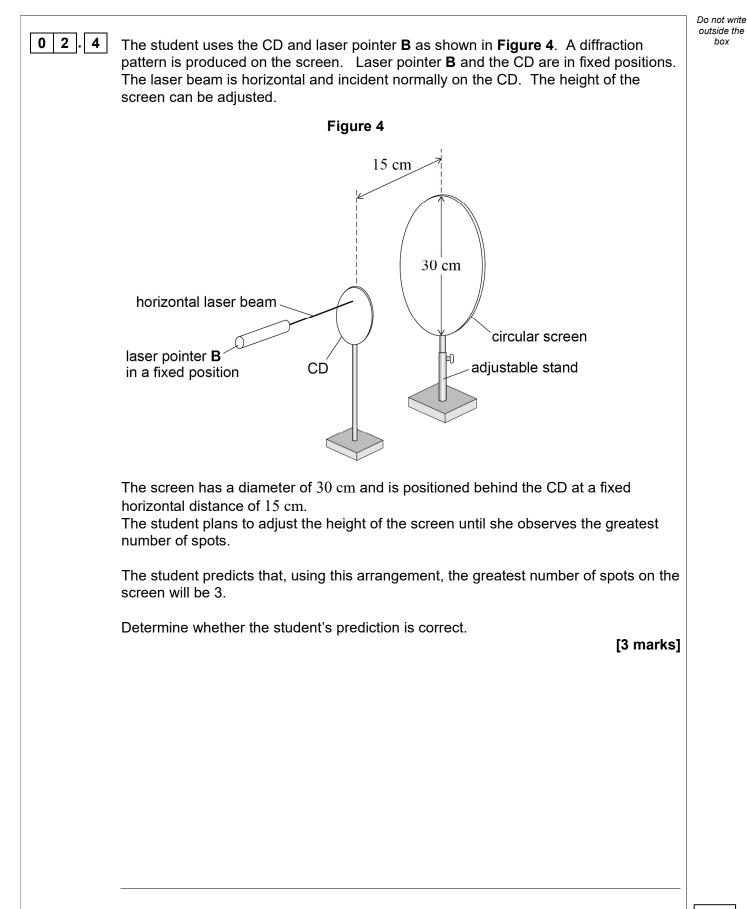
02.2	Explain how light from the diffraction grating forms a maximum on the screen.	Do not write outside the box
	[3 marks]	
	Question 2 continues on the next page	

Turn over ►

The student also has two laser pointers **A** and **B** that emit different colours of visible light.

 Table 2 and Table 3 show information about the discs and the laser pointers.

Disc	Slit spacing / μm
Blu-ray disc	0.32
DVD	0.74
CD	1.60

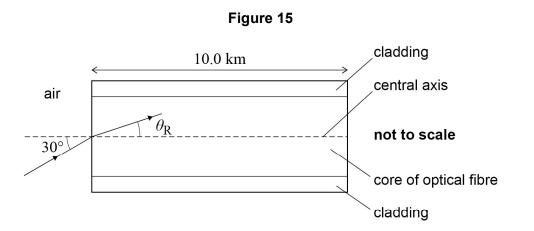

Laser pointer	Wavelength of light emitted / $10^{-7}~{ m m}$
Α	4.45
В	6.36

0 2.3

Deduce the combination of disc and laser pointer that will produce the **greatest** possible number of interference maxima.

[2 marks]

9


Turn over ►

0 7	Optical fibres are used to carry pulses of light.		Do not writ outside the box
0 7.1	Explain what is meant by modal dispersion in an optical fibre.	[2 marks]	
	Question 7 continues on the next page		
		Turn over ►	

IB/M/Jun21/7407/1

Figure 15 shows a ray of light incident on the central axis of an optical fibre at an angle of incidence of 30° . The optical fibre is straight and horizontal and has a length of 10.0 km.

For light incident on the core at a given angle of incidence, the angle of refraction $\theta_{\rm R}$ varies with the frequency *f* of the light.

Figure 16 shows how sin $\theta_{\rm R}$ varies with f when the angle of incidence is 30°.

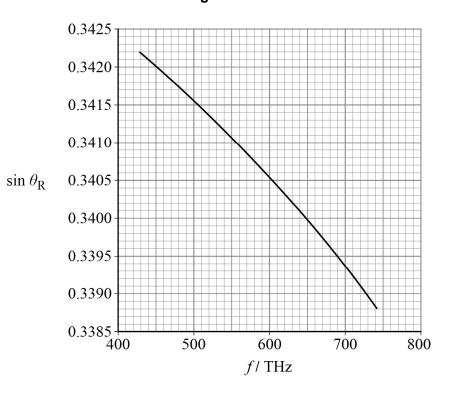
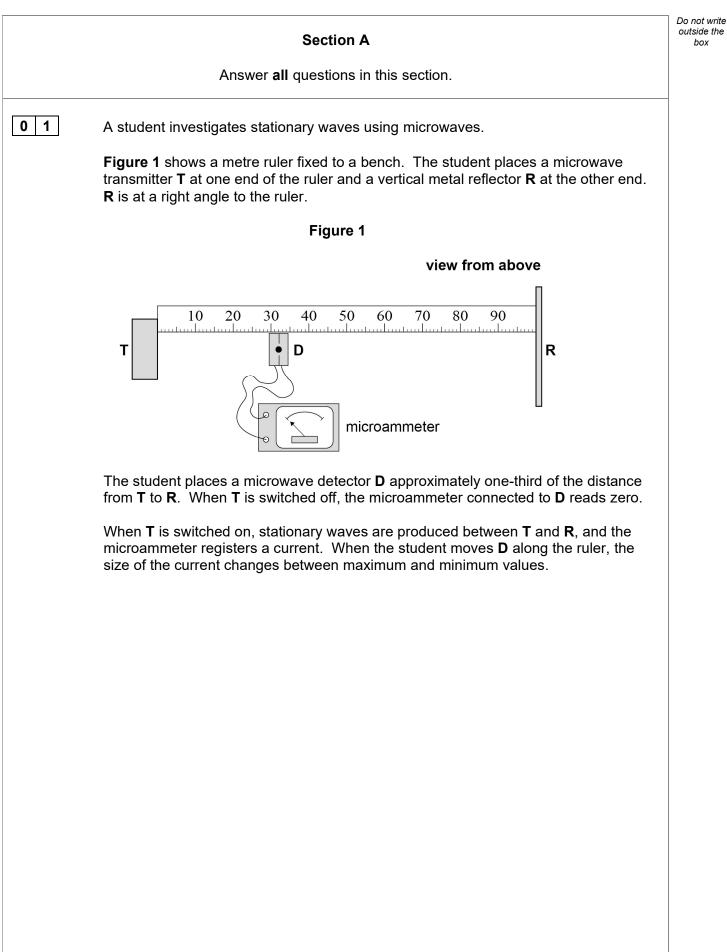
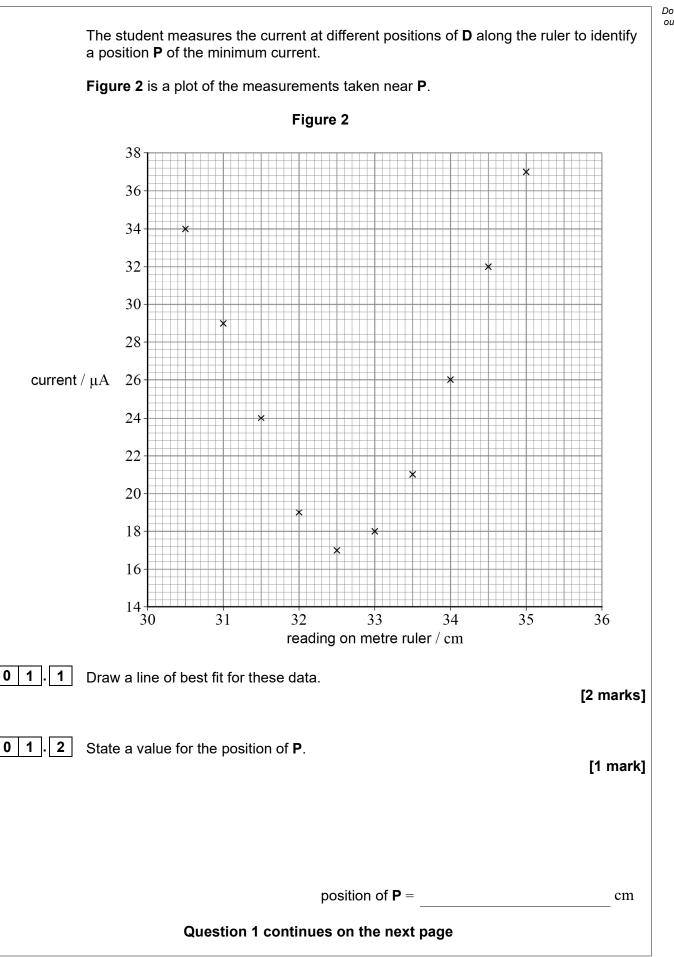


Figure 16

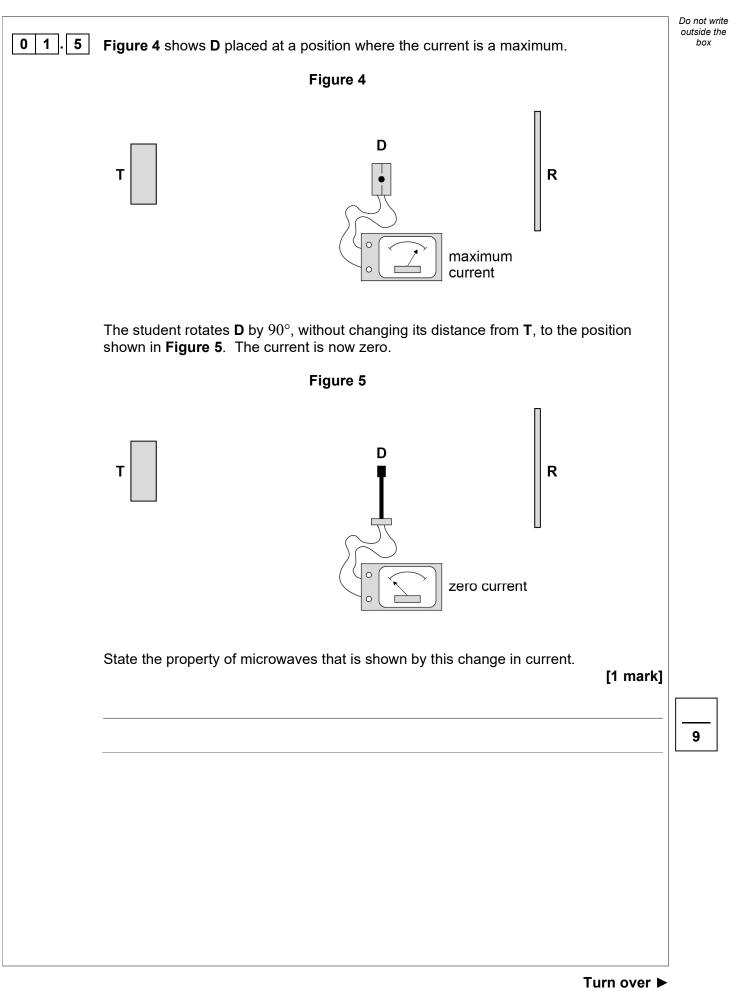
			Do n outs
	The transit time is the time between a pulse of light entering and leaving the fibre.	e optical	Ł
	A single pulse of blue light is incident on the air–core boundary at an angle incidence of 30° .	of	
	The transit time of this pulse along the $10\ km$ length of the optical fibre is $5.225\times 10^{-5}\ s.$		
0 7.2	Show that the horizontal component of the velocity of the pulse is approximately $1.9 \times 10^8 \text{ m s}^{-1}$.	[1 mark]	
0 7.3	The frequency of the blue light in the pulse is 720 THz .		
	Calculate the speed of the blue light in the core of the optical fibre.	[3 marks]	
	speed =	m s ⁻¹	
	Question 7 continues on the next page		
	T	urn over ►	



Do not write
outside the
box


07.4	Two pulses of monochromatic light are incident normally on the air-core boundary. They then travel along the central axis of the core. One pulse consists of blue light; the other consists of red light. Explain, with reference to refractive index, why the pulse of red light has a shorter transit time than the pulse of blue light. [2 marks]
0 7 . 5	Another two pulses, identical to the pulses in Question 07.4 , are incident on the central axis of the optical fibre and travel along its length. However, the pulse of red light and pulse of blue light are now incident on the air-core boundary at an angle of incidence of 30°. Suggest one reason why the difference in their transit times may not be the same as in Question 07.4 . [1 mark]
	END OF QUESTIONS

9



Turn over ►

01.3	The student moves D along the metre ruler towards R and observes a series of maximum and minimum readings on the microammeter. He identifies Q as the position of the 8th minimum current from P . He measures the distance PQ to be 50.9 cm, as shown in Figure 3 . Figure 3 T D D D D D D D D D D	Do not write outside the box
	percentage uncertainty in PQ =	%
0 1.4	Deduce the frequency of the microwaves produced by T. [3 mar	ks]
	frequency =H	z

