- 11 Solar panels consisting of combinations of photovoltaic cells use energy in the radiation received from the Sun to generate electricity.
 - (a) An advertisement for solar panels claims that the intensity of radiation from the Sun incident at the top of the Earth's atmosphere is more than 2 kW m^{-2} .

Assess the validity of this claim.

radius of Sun = 6.96×10^8 m

surface temperature of $Sun = 5790 \, K$

distance from Sun to Earth = 1.50×10^{11} m

(4)

(b) The average intensity of radiation from the Sun incident at the Earth's surface over a 24-hour period has been determined to be 164 W m⁻².

	Explain why.	(4)
(ii)	It is claimed that the area of solar panels needed to generate 100 GW of power is about 0.5% of the surface area of the Earth.	
	Assess the validity of this claim.	
	radius of Earth = 6.4×10^6 m	
	typical efficiency of solar panels = 25%	
		(4)

	A space station in a geostationary orbit is above the equator and has a period of 24 hours.	
	Explain one advantage of locating the space station in a geostationary orbit.	(2)
(ii)	Calculate the height h of the space station above the equator when it is in a geostationary orbit.	
	mass of Earth = 6.00×10^{24} kg	
	$24 \text{ hours} = 8.64 \times 10^4 \text{ s}$	(4)

TOTAL FOR PAPER = 120 MARKS

(6)

A projectile of mass 65 g is fired vertically upwards into a stationary wooden block of mass 2.400 kg, as shown.

(a) The projectile becomes embedded in the block. They both move vertically upwards through a vertical displacement of 55 cm before momentarily coming to rest.

Calculate the energy dissipated as the projectile hits the block.

(0)

Energy dissipated =

(b) Explain how the principle of conservation of energy applies to this collision.	(2)
(Total for Question 7 = 8 ma	arks)

10 A student carried out an experiment to determine the viscosity of some honey. He filled a tall glass cylinder with honey as shown, and timed a ball bearing as it fell through the honey.

(a) The student placed rubber bands near the top and bottom of the cylinder. He started a stopwatch when the ball bearing passed the first band and stopped the stopwatch when the ball bearing passed the second band. He repeated this several times to determine a mean time.

Criticise the student's method.

(2)

(b) The time t for the sphere to fall through a distance of 25.0 cm is shown in the table.

		t/	's	
6.4	10	6.35	6.36	6.38

(i) Show that the mean velocity v of the ball bearing is about $0.04\,\mathrm{m\,s^{-1}}$.

(3)

(ii) The student had three different types of honey available.

Viscosity η is given by the following expression

$$\eta = \frac{2r^2g\left(\rho_{\rm\scriptscriptstyle B} - \rho_{\rm\scriptscriptstyle H}\right)}{9v}$$

radius r of ball bearing = $5.50 \times 10^{-3}\,\mathrm{m}$ density of ball bearing $\rho_{\mathrm{B}} = 7750\,\mathrm{kg}\,\mathrm{m}^{-3}$ density of honey $\rho_{\mathrm{H}} = 1360\,\mathrm{kg}\,\mathrm{m}^{-3}$

Viscosity (at 20°C)/Pas					
Honey A	Honey B	Honey C			
10.6	12.5	13.6			

Deduce which honey the student used

(2)

(Total for Question 10 = 7 marks)

