9 A mass is attached to a light thread which is fixed at X. The mass is moving at constant speed in a horizontal circle, centre O.

Which of the following is a correct free-body force diagram for this mass?

- \mathbf{X} A
- \boxtimes B
- \times C
- \times D

(Total for Question 9 = 1 mark)

A trolley, mass $0.50\,\mathrm{kg}$, has a speed of $2.0\,\mathrm{m\,s^{-1}}$. A second trolley, mass $1.0\,\mathrm{kg}$, has a speed of $2.0\,\mathrm{m\,s^{-1}}$. The two trolleys are travelling in opposite directions and collide.

Which of the following could be a correct value of total momentum, in $kg\ m\ s^{-1}$, after the collision?

- \triangle A 0
- **■ B** 1.0
- **□ C** 2.0
- **■ D** 3.0

(Total for Question 2 = 1 mark)

(Total for Question 3 = 1 mark)

- 6 Which of the following are the base units for impulse?
 - \triangle A kg m s⁻¹
 - $\mathbf{B} \, \mathrm{kg} \, \mathrm{m} \, \mathrm{s}^{-2}$
 - C Nm
 - D Ns

(Total for Question 6 = 1 mark)

- 17 A centrifuge is a machine which rotates.
 - (a) A particle in a centrifuge moves in a circle of radius *r*, centre O, with a constant speed *v*. The diagram represents two positions of the particle.

Derive the equation for centripetal acceleration $a = \frac{v^2}{r}$ by considering the velocity at these two positions.

Your answer should include a vector diagram.

(5)

(b) The United States' space agency, NASA, uses a centrifuge to test whether equipment will operate when experiencing large forces. The equipment to be tested is attached to the end of the frame of the centrifuge, which rotates around a vertical axis at its centre.

The centrifuge rotates at 50 revolutions per minute with a radius of 8.8 m.

(i)	Show that the angular velocity of the centrifuge is about 5 rad s ⁻¹ .	
	(2)

(i	i)	Exp.	lain	how	the	centrif	iuge	appl	ies	large	forces	to	the	equip	ment	und	er	test.		
																			(2	

 	• • • • •	 	 • • • • •	 																	

(iii) The NASA website says the centrifuge can be used to test whether the equipment can withstand accelerations of up to about 25g.

Deduce whether this claim is correct.		
	(2

(Total for Question 17 = 11 marks)

