7 The graph below shows the variation of potential difference *V* with charge *Q* for a capacitor.

Which row is correct for the gradient of the graph and the area under the graph?

	Gradient of graph	Area under the graph
Α	capacitance ⁻¹	work done
В	capacitance ⁻¹	permittivity
С	capacitance	power
D	capacitance	energy

Your answer	[1]
-------------	-----

8 A capacitor discharges through a resistor. At time t=0, the charge stored by the capacitor is $600\,\mu\text{C}$. The capacitor loses $5.0\,\%$ of its charge every second.

What is the charge **left** on the capacitor at time t = 4.0 s?

- **A** 111 μC
- **B** 120 μC
- **C** 480 μC
- **D** 489 μC

Your answer		[1]

9	The The	o isolated parallel capacitor e separation between the pl e charge on each plate re ubles.	ates is doubled.			between	the plates
				+ + + +			
		+	+ + + +				
		_					
			before	after			
	Whi	ich statement is correct?					
	Α	The capacitance of the ca	pacitor doubles.				
	В	The energy stored by the	capacitor is halved.				
	С	The permittivity of free spa	ace doubles.				
	D	The electric field strength	between the plates	remains the san	ne.		
	You	ur answer					[1]

[1]

© OCR 2017 Turn over

21	(a)	A capacitor of capacitance 7.2 pF consists of two parallel metal plates separated by an
		insulator of thickness 1.2 mm. The area of overlap between the plates is 4.0×10^{-4} m ² .
		Calculate the permittivity of the insulator between the capacitor plates.

(b) Fig. 21 shows a circuit.

Fig. 21

The capacitance of each capacitor is $1000\,\mu\text{F}$. The resistance of the resistor is $10\,k\Omega$. The cell has e.m.f. 1.5V and negligible internal resistance.

(i) Calculate the total capacitance C in the circuit.

(ii)	The switch S is closed at time $t = 0$. There is zero potential difference across	the
	capacitors at $t = 0$.	
	Calculate the potential difference V across the resistor at time $t = 12$ s.	

V = V [2]

© OCR 2017 Turn over

3 A student is investigating how the discharge of a capacitor through a resistor depends on the resistance of the resistor.

The equipment is set up as shown in Fig. 3.1.

Fig. 3.1

The student charges the capacitor of capacitance C and then discharges it through a resistor of resistance R using switch **S**. After a time t = 15.0 s the student records the potential difference V across the capacitor. The student repeats this procedure for different values of R.

It is suggested that V and R are related by the equation

$$V = V_0 e^{-\frac{t}{CR}}$$

where V_0 is the initial potential difference across the capacitor and t is the time over which the capacitor has discharged.

(a) The student decides to plot a graph of $\ln(V/V)$ on the *y*-axis against $\frac{1}{R}$ on the *x*-axis to obtain a straight line graph. Show that the magnitude of the gradient is equal to $\frac{15}{C}$.

[2]

(b) Values of R and V at t = 15.0 s are given in the table below.

R/kΩ	V/V	$\left(\frac{1}{R}\right)/10^{-6} \Omega^{-1}$	In (V/V)		
56	3.0 ± 0.2	18			
68	3.7 ± 0.2	15	1.31 ± 0.06		
100	5.0 ± 0.2	10	1.61 ± 0.04		
150	6.4 ± 0.2	6.7	1.86 ± 0.03		
220	7.3 ± 0.2	4.5	1.99 ± 0.03		
330	8.1 ± 0.2	3.0	2.09 ± 0.03		

(i) Complete the missing value of $\ln (V/V)$ and its absolute uncertainty in the table above.

(ii) Use the data to complete the graph of Fig. 3.2. Four of the six points have been plotted for you. [2]

Fig. 3.2

(iii) Use the graph to determine a value for *C*. Include the absolute uncertainty and an appropriate unit in your answer.

C = ± unit [4]

© OCR 2017 Turn over

(c)	Determine the value of R , in potential difference in 15.0s. S	•	discharges	to 10%	of its	original
		R =				kΩ [2]

A capacitor is charged through a resistor. 9

The cell has e.m.f. 1.50 V and negligible internal resistance.

The capacitor is initially uncharged. The time constant of the circuit is 100 s.

The switch is closed at time t = 0.

What is the potential difference across the capacitor at time $t = 200 \,\mathrm{s}$?

- 0.20 V
- В 0.55 V
- C 0.95 V
- 1.30 V D

Your answer			[1]
Your answer			[

22 A student wishes to determine the permittivity ε of paper using a capacitor made in the laboratory.

The capacitor consists of two large parallel aluminium plates separated by a very thin sheet of paper.

The capacitor is initially charged to a potential difference V_0 using a battery. The capacitor is then discharged through a fixed resistor of resistance $1.0\,\mathrm{M}\Omega$.

The potential difference V across the capacitor after a time t is recorded by a data-logger. The student uses the data to draw the $\ln V$ against t graph shown in Fig. 22.

Fig. 22

(a) Show that the magnitude of the gradient of the line shown in Fig. 22 is equal to

$$\frac{1}{CR}$$

where *C* is the capacitance of the capacitor and *R* is the resistance of the resistor.

			ents req		