The following information is for use in questions 7 and 8.
The diagram shows the $Q-V$ graph for a capacitor charged to 12 V .

$Q=C V$
$c=\frac{Q}{V}=\frac{24 m}{12}$
2 mF

7 What is the capacitance?
(A) $\times 10^{-3} \mathrm{~F}$

B $\quad 144 \times 10^{-3} \mathrm{~F}$
C $288 \times 10^{-3} \mathrm{~F}$
D 500 F

Your answer \square
$T=\frac{1}{2} Q V=\frac{1}{2} \times 24 m \times 12$
$=144 \times 10^{-3} 5$

8 Which of the following is the energy stored?
A $2 \times 10^{-3} \mathrm{~J}$
B) $144 \times 10^{-3} \mathrm{~J}$

C $288 \times 10^{-3} \mathrm{~J}$
D 500 J

Your answer \square

34 A student makes an iterative model for the decay of charge on a capacitor. The time constant of the circuit is $R C=10 \mathrm{~s}$.

(a) Complete the numerical values in the two blank cells in the table.
(b) (i) Explain the physics behind the approximation in the third column of the table $\Delta Q \approx \frac{Q \Delta t}{R C}$.

(ii) State the assumption made in using this approximation and explain how its effect can be made insignificant.

smaller value

2 This question is about charging a capacitor in a circuit with two resistors in series.

Fig. 2.1
(a) Show that the p.d. across the $4.7 \mathrm{k} \Omega$ resistor in the circuit in Fig. 2.1 is about 4 V , assuming that the cell has zero internal resistance.

$$
\left(\frac{4 \geq}{2+4 \cdot 7}\right) \times 6=4.20
$$

(b) A student changes the circuit as shown in Fig. 2.2

Fig. 2.2
Show that the time constant of the circuit is about 15 s .

$$
\begin{aligned}
t=R c & =2200 \times 10^{-6} \times 2000 \times 4700 \\
& =14.7 \mathrm{~s}
\end{aligned}
$$

(c) The graph in Fig. 2.3 shows how the p.d. across the capacitor varies with time up to $5 R C$. Add a line to the graph that shows how the p.d. across the $4.7 \mathrm{k} \Omega$ resistor varies with time.

Add another line to show how the p.d. across the $2.0 \mathrm{k} \Omega$ resistor varies with time. Label the lines.

Goth exp $\rightarrow 0$ at 5 RC

Fig. 2.3
(d) Calculate the time it takes from the start of the charging for the pod across the capacitor to

$$
\begin{aligned}
& \text { reach } 5.0 \mathrm{~V} \text {. } \\
& \begin{array}{c}
\text { reach 50V. }\left(1-e^{-t / R c}\right) \Rightarrow \frac{v}{V_{0}}=1-e^{-t / R c} \quad-t / r c \\
-t / r c
\end{array} \quad \ln 1=0 \\
& \begin{array}{l}
\frac{v}{v_{0}}-1=-e^{-t / c c} \Rightarrow 1-\frac{v}{V_{6}}=e \\
\Rightarrow \ln \left(1-\frac{V_{V}}{V_{0}^{\prime}}\right)^{\frac{1}{6}}=-\frac{t}{R c} \Rightarrow-1.79 \times \overparen{R C}=-t
\end{array} \\
& 26.3 \mathrm{sec}
\end{aligned}
$$

$$
\text { time }=
$$

\qquad s [4]

The following information is for use in questions 13 and 14.
An uncharged capacitor and a resistor are connected in this circuit.

current/mA

> p.d. across the
p.d. across the resistor/V
A 0
12
0
B 2
8
4
C 3
6
6
D $\quad 6$
0
12

13 Which set of values \mathbf{A} to \mathbf{D} above, most closely represents the situation immediately after the switch is closed?

we C
Your answer \square

14 Which set of values \mathbf{A} to \mathbf{D} above, most closely represents the situation 3 seconds after the switch is closed?

Your answer A

$$
\begin{equation*}
R C \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& =1.6 \times 10^{-6} \times 2 \times 10^{3} \\
& =3.2 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

so its

$$
\begin{aligned}
& \text { O its a July } \\
& \text { Charge Capaito }
\end{aligned}
$$

$$
\text { So } \frac{I \simeq O_{\mathrm{omps}}}{\& V_{c}=12 U}
$$

