2017 fund

24

SECTION C

Answer all the questions.

36	The	Mod	on is in circular orbit around Earth at constant speed.
	(a)	Exp	lain why we describe the Moon as accelerating towards the Earth.
			[2]
	(b)	(i)	Starting from the equation for circular motion show that the acceleration of the Moon towards the Earth is given by $a=\frac{4\pi^2R}{T^2}$ where the Moon's orbital radius is R and the Moon's orbital time is T .
		(ii)	Show that the Moon's acceleration is less than $3\mathrm{mms^{-2}}$. $R = 3.84 \times 10^8\mathrm{m} \qquad T = 2.35 \times 10^6\mathrm{s}$
		(iii)	The Moon's orbital radius $R=60\times R_{\rm Earth}$. The gravitational acceleration at the Earth's surface $g=9.8{\rm ms^{-2}}$. Calculate the acceleration due to the Earth's gravity at the Moon's orbit. Compare this value to the value calculated in (ii).
			acceleration = ms ⁻²

16 A satellite orbits the Earth in a circular orbit of height 2.3×10^6 m above the ground.

What is the angular velocity ω of the satellite?

radius of Earth = 6.4×10^6 m. mass of Earth = 6.0×10^{24} kg

- **A** $6.1 \times 10^{-7} \text{ rad s}^{-1}$
- **B** $3.3 \times 10^{-5} \text{ rad s}^{-1}$
- C $7.8 \times 10^{-4} \text{ rad s}^{-1}$
- **D** $5.7 \times 10^{-3} \text{ rad s}^{-1}$

Your answer

[1]

[1]

© OCR 2016 H557/01