The following information is for use in questions 17 and 18.
A transformer runs a 36.0 W lamp from a 24.0 V a.c. supply.

17 What is the current in the secondary coil?
A 1.5 A
B 3.0 A
C $\quad 4.0 \mathrm{~A}$
D 6.0 A

Your answer \square

18 What is the best estimate for the rate of change of flux in the transformer core?
A $\quad 0.12 \mathrm{Wbs}^{-1}$
B $\quad 0.12 \mathrm{Tm}^{-2} \mathrm{~s}^{-1}$
C $12 \mathrm{Wbs}^{-1}$
D $12 \mathrm{Tm}^{-2} \mathrm{~s}^{-1}$

Your answer \square

20 At 300 K a process has an activation energy $E=10 \mathrm{kT}$.
The temperature is raised to 330 K .
Which statement about the rate of the process is correct?
It will increase by
A 10\% because temperature has increased by 10%.
B 10\% because the mean square speed of the particles has increased by 10%.
C 9.1 times because $\frac{E}{k T}=\frac{3000 k}{330 k}=9.1$.
D 2.5 times because $e^{\frac{-E}{k T}}$ has increased by $\frac{e^{-9.1}}{e^{-10}}=2.5$ times.
Your answer \square

21 Which of the following changes doubles the flux in a magnetic circuit?
1 doubling the permeance
2 doubling the current-turns
3 halving the circuit length
A 1, 2 and 3 are correct
B only 1 and 2 are correct
C only 2 and 3 are correct
D only 1 is correct

Your answer \square

22 An aluminium ring is free to move on a steel rod. When the power supply is on, the ring floats.

Which of the following is correct?
A An a.c. or d.c. power supply can be used.
B The induced current in the ring is in the same direction as the current in the coil.
C The only purpose of the steel rod is to support the ring.
D When the ring is pushed down towards the coil more flux links it and the induced current increases.

Your answer \square

The following information is for use in questions 23 and 24.
A 6 V a.c. supply is connected to the 100 turn primary coil of an ideal transformer. The 200 turn secondary coil runs a lamp which dissipates 24 W .

23 Which is the best estimate of the current in the secondary coil?
A $\quad \frac{1}{4} \mathrm{~A}$
B $\quad \frac{1}{2} \mathrm{~A}$
C 2 A

D 4 A

Your answer \square

24 Which is the best estimate of the current in the primary coil?
A $\quad \frac{1}{4} \mathrm{~A}$
B $\quad \frac{1}{2} \mathrm{~A}$
C 2 A
D 4 A

Your answer \square

3 This question is about the measurement of the B-field between a pair of slab magnets.
Fig. 3.1 shows the arrangement of the apparatus used in the experiment. It consists of a pair of slab magnets, with opposite poles facing one another, fixed onto a piece of U-shaped soft iron. The magnet assembly sits on top of an electronic balance. A rigidly fixed wire is shaped to carry a current I between the magnetic poles. The force created alters the balance reading.

Fig. 3.1
Fig. 3.2 shows a section through the magnet assembly. The dot in the centre represents the wire.

Fig. 3.2
(a) (i) Draw, on Fig. 3.2, at least three lines to represent the magnetic field in the region between the magnetic poles when the current in the wire is zero.
(ii) Explain why the balance reading changes to a new value when the wire carries a current.
\qquad
\qquad
\qquad
(b) The longest length of wire that could be used is 5.0 cm . The current I is varied and the change in the balance reading is recorded as shown in Fig. 3.3.

	Change in balance reading/g				
I/A	Trial 1	Trial 2	Trial 3	Mean change/g	$F / \times \mathbf{1 0}^{\mathbf{- 3} \mathbf{N}}$
0.5	0.08	0.05	0.06	0.06	0.59
1.0	0.14	0.16	0.16	0.15	1.5
1.5	0.22	0.20	0.23	0.22	2.2
2.0	0.31	0.29	0.31	0.30	2.9
2.5	0.38	0.39	0.35		
3.0	0.44	0.48	0.48		

Fig. 3.3
(i) Complete the table by calculating the mean change in balance reading and the corresponding values of force F for the last two current values. $\mathrm{g}=9.8 \mathrm{Nkg}^{-1}$
(ii) Use the table to determine the uncertainty in F. Explain your reasoning.
(iii) Plot the last two points from the table, Fig. 3.3, on the graph Fig. 3.4. Draw a line of best fit.

Fig. 3.4
(iv) Use the graph to estimate the value of the B-field between the faces of the slab magnets.

