3 Fig. 3.1 shows a short bar magnet being dropped vertically through a small horizontal coil.

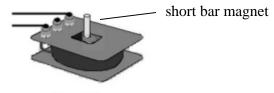
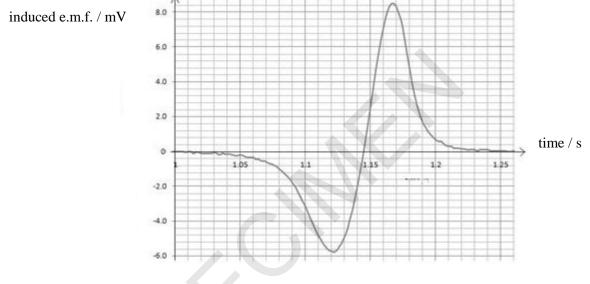



Fig. 3.1

Fig. 3.2 shows the graph of how the e.m.f. induced in the coil varies with time, as the magnet passes through the coil.

(a)* Identify and explain the main features of the peaks of induced emf shown on Fig. 3.2, in terms of Faraday's law of electromagnetic induction. [6]

9

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
Additional answer space if required.

(b) An experiment is being planned for dropping a much longer bar magnet through the small coil of **Fig. 3.1** and measuring the induced emf.

Sketch and label an apparatus diagram.

State **one** aspect that would need to be controlled in order to obtain accurate data and explain how you would achieve this.

11

3 (c) Explain how the graph in **Fig. 3.2** would change if:

1 a much longer bar magnet replaced the short bar magnet.

2 a much larger diameter coil replaced the small coil.

(d) The data in **Fig. 3.2** were obtained using an 1100 turn coil.

Calculate the total flux linking the coil from when the magnet **enters** the coil to the point at which the magnet is central within the coil.

flux linked =Wb [2]

[4]

H557/03

Question	Answer	Marks	Guidance
3 (a)*	Level 3 (5–6 marks) All 3 features fully explained: sense and amplitude explained in terms of changes of flux linking coil. Explanations involve reference to Faraday's Law or $\varepsilon = (-) N \Delta \Phi / \Delta t$. Sense: increase in $N \Delta \Phi$ is + ve and decrease – ve. Amplitude: peak occurs when rate of change of flux linkage is greatest, may be mathematically expressed. Area: equated to total change of flux linkage with coil = $\Sigma \varepsilon \Delta t$ = (-) $N \Delta \Phi$ or sum of strips and same flux links coil on way in as unlinks from coil on way out. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) 2 or 3 features quite well explained: sense and amplitude explained in terms of changes of flux through coil. Explanation may involve reference to Faraday's Law or $\varepsilon = (-) N \Delta \Phi / \Delta t$. Area simply equated to change of flux and idea that increase = decrease in flux or both end points have zero flux through coil. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	6	 Indicative scientific points may include: Features of induced peaks to be explained Sense of each peak opposite Amplitude of 2nd peak larger because greater speed or greater (-)N ΔΦ /Δt area under peaks is equal because Σε Δt = (-) N ΔΦ Vocabulary guidelines Level 3 in terms of changing flux linkage NΦ with coil Level 2 in terms of changes of flux Φ through coil Level 1 in terms of field lines B being cut by coil Marking guidelines accept arguments using mathematical symbolism

H557/03

Question	Answer	Marks	Guidance
	Level 1 (1–2 marks) 1 or 2 features explained at a low level in terms of cutting lines of magnetic field e.g. cut in opposite direction, cut at a different rate, total field cut on way in equals field cut on way out. Some attempt at $\Delta B / \Delta t$.		
	There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		
	0 marks		
	No response or no response worthy of credit.		
(b)	Labelled sketch: horizontal coil connected to data-logger or oscilloscope and vertical magnet ✓ OR plastic guide tube to keep long magnet vertical etc.	3	ignore clamps stands / unlabelled parts max 1 marks for diagram
	identify uncertainty in timing as control variable \checkmark		and lithing to Que and it to an ainternation Que and a fam
	method:		credit up to 2 sensible points - max 2 marks for method
	increase sampling rate to reduce uncertainty in time or increase sensitivity in scale for p.d. or use automatic trigger on d-logger or identify using longer bar magnet increases transit time and thus reduces percentage uncertainty ✓		

Question	Answer	Marks	Guidance
(c)	 1 Peaks separate in time or a period of no emf between ✓ because only change in flux linking coil when magnetic poles enter or leave coil ✓ OR Second peak much greater amplitude and shorter duration ✓ due to higher velocity (under acceleration of gravity) as pole leaves coil and flux linkage changes at much greater rate ✓ 2 Very small or zero induced emf ✓ because flux of magnet loops close to magnet and does not reach to link with the much larger diameter coil ✓ 	4	
(d)	Total flux linking coil = area under graph $N \Phi = \Sigma \varepsilon \Delta t$ or counting squares or area $\Delta \checkmark$ $(\Phi = A / N = \frac{1}{2} \times 0.08 \times 5.8 \times 10^{-3} / 1100)$ = 0.21 x 10 ⁻⁶ (Wb) \checkmark	2	
	Total	15	