SECTION SECTION

You should spend a maximum of 40 minutes on this section.

Write your answer for each question in the box provided.

			Answer all the questions.					
1	Whi	Which pair contains one vector and one scalar quantity?						
	Α	velocity	acceleration					
	В	displacement	force					
	С	kinetic energy	work done					
	D	momentum	distance					
	You	r answer			[1]			
2	The	unit of electrical resistance	is the ohm Ω . 1Ω is the same	as				
	Α	1 C V ⁻¹						
	В	1 S ⁻¹						
	С	$1 C^2 J^{-1} s^{-1}$						
	D	1 A V ⁻¹						
	You	r answer			[1]			
3	Whi	ch quantity is followed by a	reasonable estimate of its ord	er of magnitude?				
	Α	weight of an apple		10 ⁰ N				
	В	volume of a table tennis ba	II	10 ³ cm ³				
	С	wavelength of infra-red rad	iation	10 ⁴ m				
	D	temperature of Sun's surface	ce	10 ⁵ K				
	You	r answer			[1]			

The following	information	is	for use	in	questions	15	and	16
THE TONOTHING	, ii ii oi i i i a a a a a		101 000		quodilono		alla	

Two heater coils **X** and **Y** dissipate the same power when coil **X** runs at 12 V and coil **Y** runs at 6 V. The coils are made from equal lengths of wire of the same material, but different diameter.

15	Whi	ch one of A to D below is equal to the ratio	resistance of X ? resistance of Y	
	Α	1/4		
	В	1/2		
	С	2		
	D	4		
	You	r answer		[1]
16	Whi	ch one of A to D below is equal to the ratio	diameter of wire X ? diameter of wire Y	
	Α	1/4	diameter of wife 1	
	В	1/2		
	С	2		
	D	4		
	You	r answer		[1]

© OCR 2017 Turn over

11 Fig. 11.1 is an incomplete circuit diagram to measure the conductance of an electrical component called a thermistor.

Fig. 11.1

(a) Complete the circuit diagram, including an ammeter and voltmeter.

[2]

(b) At 300 K, the current in the thermistor is 1.4 mA when the p.d. across it is 5.6 V. Show that the conductance of the thermistor is about 3×10^{-4} S.

[1]

- (c) The electrical behaviour of a thermistor can be modelled as follows:
 - · most electrons are bound to atoms
 - those few electrons with an extra energy $\mathcal E$ are able to move freely
 - (i) Use ideas about the Boltzmann factor to explain why the conductance of a thermistor increases with increasing temperature.

Your answer should use correct spelling and grammar.

(ii)	The Boltzmann factor can be used with the model to predict that the conductance G of
	the thermistor at temperature T is given by the relationship

$$G = G_0 e^{\frac{-\mathcal{E}}{kT}}$$
.

Use your answer to (b) to calculate the conductance of the thermistor at $400\,\mathrm{K}.$

$$\mathcal{E} = 5.0 \times 10^{-20} \text{ J}$$

 $k = 1.4 \times 10^{-23} \text{ J K}^{-1}$

conductance =		S	[3]	
---------------	--	---	----	---	--

[Total: 9]

© OCR 2012 Turn over

Lity 18

- 6 This question is about conduction in metals and in semiconductors.
 - (a) A copper wire of length 1.5 m and radius 2.5×10^{-4} m has a resistance of 0.13Ω at $20 \,^{\circ}$ C. Calculate the conductivity of copper at this temperature.

15

conductivity at
$$20 \,^{\circ}\text{C} = \dots \, \text{Sm}^{-1}$$
 [3]

(b) A simple model of conduction suggests that each copper atom in the wire contributes one or more electrons to a cloud of free electrons that behave rather like particles in a gas. These electrons drift through the wire under the influence of an electric field.

The current I is given by the equation I = nave where:

 $\it n$ is the number of free electrons in the material per $\it m^3$

a is the cross-sectional area of the wire

v is the drift velocity of the electrons

e is the electronic charge.

Calculate the drift velocity of the electrons when the copper wire in part (a) carries a current of 2.3A. The number of free electrons per m^3 in copper = $8.5 \times 10^{28} \, \text{m}^{-3}$

drift velocity = ms^{-1} [2]

© OCR 2018

(c)*	The	conductiv	vity	σ of	semico	nductors	such	as	ntc	thermistors	increases	dramatically	with
	temp	perature 7	<i>T</i> . Th	ne rel	ationshi	p is give	n by th	ne e	qua	tion			

$$\sigma = C e^{-E/kT}$$

where C is a constant, k is the Boltzmann constant and E is the energy required to ionise an atom in the semiconductor.

Use the relationships given in the question to explain the effect of increasing temperature on the conductivity of metals and semiconductors, referring to the microscopic structure of the materials. No calculations are required. [6]