Every wondered how come a puddle can evaporate (ie liquid becomes a gas) at say 20 centigrade?

Energy need to break bonds = EA

y an important votro - it

is Activation every. If this is high, nothing Thermal energy much happens

If En is 15-30 processes start to happen. Howcome? ht Should It? En is 15 to 30 tems kT (engry). Not enough to break those bonds wit?

Random Collisions

Comes down to the fact that when two particles collide there is a chance that one of the pair will gain more than the average kT from the collision. This can happen several times in a row - leading to a particle with more energy (considerably more) than the kT.

How many particles will have extra energy 2E.... Well its f x f or f² How many will have extra energy 3E f³ You will be surprised to learn for 4E its f4 Etc...

Here's the important point...

We need 15kT to 30kT - so that's f^{15} to f^{30} - ie a tiny, tiny, tiny fraction

But because we have such huge numbers of particles (like 1 mole is 6x10²³ remember) - we do in fact end up with quite a few particles with 15kT.

The Boltzmann Factor

You can find the ratio of particles in different energy states from the Boltzmann Factor

$$e^{-\frac{E}{kT}}$$

The BF (as we call it) is also an approx measure of the probability that a particle has an energy at least E (remember E is the energy above the average kT)

Por BA = = 30 He BF = e 2 10

So about 1 in every 10¹³ to 10⁷ will have enough energy to overcome the E_A - eg break the bonds and leave the puddle - evaporate

So not very many then - - - except that apparently the average particle in an ideal gas makes about 10⁹ collisions per second.

Here's an example of how to use this:

A liquid has E_A binding each molecule of 0.4eV What is the average energy of the molecules at T=75K?

prox eregy = KT = 1:38×10²³×75=1×10²¹ 5 Find EA for 1 escaping molecule? KT

Ex = 0.4 = 62 (ish)

RT (5x10) \quad \quad

ive to probability

particle has everyy > BA

so pretty unlikely !!!

d) will this liquid evaporato?

You'd think no ... but why

We need BF between 15-30 & it 62!!

So it will waporato ... just v. v.v. slowly