1	(a)	Balance these chemical equations.						
		(i)	H ₂ +	$O_2 \rightarrow$	H_2O	(1)		
		(ii)	Al +	$O_2 \rightarrow$	Al_2O_3			
						(1)		
	(b)	Brie	fly explain why	an unbalanced	d chemical equation cannot fully describe a reaction.			
						(2)		
					(Tot	tal 4 marks)		
2	This	ques	tion is about in	on.				
	Iron	reacts	s with dilute hy	drochloric acid	to produce iron chloride solution and one other produ	uct.		
	(a)	Nam	ne the other pr	oduct.				
						(1)		
	(b)	Sug	gest how any ι	unreacted iron o	can be separated from the mixture.			
						(1)		

$$3 \text{ Mg} + 2 \text{ FeCl}_3 \longrightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$$

0.120 g of magnesium reacts with excess iron chloride solution.					
Relative atomic masses (A_r): Mg = 24 Fe = 56					
Calculate the mass of iron produced, in mg					
Mass of iron =	_ mg				
	Relative atomic masses (A _r): Mg = 24 Fe = 56 Calculate the mass of iron produced, in mg				

(5)

(d) Explain which species is reduced in the reaction between magnesium and iron chloride.

$$3 \text{ Mg} + 2 \text{ FeCl}_3 \longrightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$$

Your answer should include the half equation for the reduction.

(3) (Total 10 marks)

A student used paper chromatography to identify the colours in a black ink.

The diagram below shows the student's results.

3

What colours are in the black ink? (a)

(2)

(b)	Suggest w	hich colour is least soluble in the solver	t.					
	Give a reason for your answer.							
	Colour							
	Reason							
(a)				(2)				
(c)	Use the dia	agram above to complete the table belo	N.					
			Distance in mm					
		Distance moved by green colour						
		Distance moved by solvent						
	Calculate the R _f value for the green colour.							
	Use the equation:							
	$R_f = \frac{\text{distance moved by green colour}}{\text{distance moved by solvent}}$							
	distance moved by solvent							
	R _f value =							
				(4) (Total 8 marks)				

4

A student investigated the mass of dissolved solids in 5 cm³ samples of water.

The diagram below shows the apparatus.

The table below shows the student's results.

	Mass in g					
Type of water	Watch glass	Watch glass and dissolved solids	Dissolved solids in 5 cm ³ of water	Dissolved solids in 1000 cm ³ of water		
Sea water	9.34	9.48	0.14	28.00		
River water	9.15	9.23	0.08	Х		
Rainwater	8.93	8.93	0.00	0.00		

		Mass X =	g
a)	Calculate mass X in the table above.		

(1)

Give one advantage and one disadvantage of using a larger volume.	
Advantage	_
Disadvantage	-
Potable water is not pure water.	_
Describe the difference between potable water and pure water.	
	_
	_
Potable water is obtained from both groundwater and from sea water.	
Describe how groundwater and sea water are treated to produce potable water.	
	_
	_
	_
	_

(e)	The percentage by mass of dissolved solids in a 6.50 g sample is 2.2%	
	Calculate the mass of the dissolved solids.	
	Mass of dissolved solids = g	
		(2)

(Total 9 marks)

Mark schemes

- 1
- (a)
- (i) $2H_2 + O_2 \rightarrow 2H_2O$

for 1 mark

(ii) 4Al + $3O_2 \rightarrow 2Al_2O_3$ for 1 mark

1

1

(b) idea that:

must end up with the same number of atoms as at the start any 2 each

otherwise matter is shown to be lost/gained for 1 mark

won't show correct amount of each element/compound

[4]

2 (a) hydrogen **or** H₂

allow hydrogen gas ignore H without the 2 subscript

1

(b) filtration / filter

allow magnet **or** decant ignore heating

1

(c) (Mg)
$$\frac{0.12}{24}$$
 or 0.005 (moles)
mark is for \div by 24

(Fe) $\frac{2}{3} \times 0.005 = 0.00333 \times 56$ mark is for $\times \frac{2}{3}$

(mass Fe) = 0.00333×56 mark is for $\times 56$

= 0.1866 (g)

= 187 (mg)

an answer of 280 (mg) scores **4** marks an answer of 0.280 scores **3** marks (no ratio from equation)

184 scores $0 = (3 \times 24) + (2 \times 56)$

OR

(Mg) =
$$\frac{0.12}{(3 \times 24 =)72}$$
 (1)
= 0.00166 **or** $\frac{1}{600}$ (moles) (1)

(mass of Fe) = 0.00166

or
$$\frac{1}{600} \times 112(2 \times 56)$$
 (1)

= 0.1866 (g) (1)

187 (mg) (1)

1

1

1

1

1

OR

72 g Mg
$$\longrightarrow$$
 112g Fe (1)

1 g Mg
$$\rightarrow \frac{112}{72}$$
 or 1.56 g Fe (1)

$$0.12 \text{ g Mg} \rightarrow \frac{112}{72} \times 0.12 (1)$$

$$= 0.1866 (g) (1)$$

$$= 187 (mg) (1)$$

an answer of 185–190 (mg) scores **5** marks an answer of 0.185–0.19 scores **4** marks

(d) Fe^{3+}

(because) reduction is gain of electrons

allow change in oxidation state / (+)3 to 0

$$Fe^{3+} + 3e^{(-)} \longrightarrow Fe$$

[10]

1

1

1

1

1

(a) red and blue

unknown

both needed for the mark

(b) red

ignore black

travels least far

dependent on correct colour allow closest to the start ...

line

1

1

	(c)	distance moved by green colour = 12 mm		
		allow 10 to 14 mm		
			1	
		distance moved by solvent = 36 mm		
		allow 35 to 36 mm		
			1	
		12		
		12 36		
		allow correct substitution of student's measurements		
			1	
		R_f value = 0.33		
		allow correct answer from student's measurements for 2		
		marks		
			1	го
				[8]
4	(a)	16(.0)	_	
_			1	
	(b)	advantage: more accurate result		
		do not accept reliable		
			1	
		disadvantage: takes a long(er) time, more energy needed (to heat more water)		
		ignore expensive		
			1	
	(c)	pure: no dissolved solids / impurities		
		or no (dissolved) chlorine		
		allow only water / H ₂ O ignore safe to drink		
		ignore sale to unink		
		and		
		potable: has dissolved solids / impurities		
		or has (dissolved) chlorine ignore safe to drink		
		ignore sale to unin	1	
		a clear comparative statement referring to solutes gains		
		the mark		

(d) groundwater: filtered allow acceptable method of filtration 1 sterilised allow acceptable method of sterilisation 1 groundwater: distilled or reverse osmosis allow desalination ignore salt removed ignore boiling alone ignore filtering do not accept fractional distillation 1 (e) $\frac{2.2}{100} \times 6.50$ 1

(=) 0.143 (g)

an answer of 0.143 (g)

or 0.14 (g) scores 2 marks

[9]