Octa	ane (C ₈ H ₁₈) is a hydro	carbon in petrol.	
a)	Cracking breaks dov	wn large hydrocarbon molecules into smaller hydrocarbon molecules.	
	Which hydrocarbon	molecule can be cracked to produce octane, C ₈ H ₁₈ ?	
	Tick one box.		
	C ₄ H ₈		
	C ₄ H ₁₀		
	C ₈ H ₁₆		
	C ₁₂ H ₂₆		
(b)	What type of carbon	compound is octane, C ₈ H ₁₈ ?	(*
	Alcohol		
	Alkane		
	Carboxylic acid		
	Ester		
c)	Oxygen is needed to	b burn fuels.	(
	Name the source of	the oxygen needed to burn fuels.	

1

Particulates and sulfur dioxide are pollutants produced when some fuels burn. (d) Draw **one** line from each pollutant to the polluting effect. **Polluting effect Pollutant** Acid rain Global dimming Particulates Global warming Sulfur dioxide Landfill Sewage sludge (2) Which two gases are produced when fuels burn in car engines? (e) Tick two boxes. Ammonia Carbon dioxide Carbon monoxide Nitrogen

Oxygen

(f)	Vehicles produce	most of the	atmospheric	pollution in	cities.
-----	------------------	-------------	-------------	--------------	---------

How could the atmospheric pollution in cities be reduced?

Tick **two** boxes.

Build more roads in cities

(2) (Total 9 marks)

2 Disposable cups are made from coated paper or poly(styrene).

The diagram below represents the structure of poly(styrene).

$$\begin{pmatrix}
C_6H_5 & H \\
-C & -C \\
-I & H
\end{pmatrix}_{r}$$

(a)	Which small molec	cule is used to produce poly(styrene)?	
	Tick one box.		
	H H H		
	C ₆ H ₅ H C == C H H		
	CH ₃ H C==C H H		
	$ \begin{array}{c c} C_6H_5 & C_6H_5 \\ & \\ C \longrightarrow C \\ & \\ H & H \end{array} $		
			(1)
(b)	Which process is u	used to make poly(styrene) from small molecules?	
	Tick one box.		
	Cracking		
	Distillation		
	Fermentation		

(1)

Polymerisation

(c) Complete the sentences.

large molecules.

Choose answers from the box.

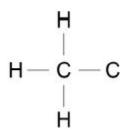
ceramics	compo	osites	four	many
	monomers	polymers	two	
Poly(styrene) i	s produced from smal	I molecules called		

When poly(styrene) is made, _____styrene molecules join to form

These large molecules are called ______.

(3)

(d) The table below gives some information about disposable cups.


	Coated paper cups	Polystyrene cups
Source of raw materials	Wood	Crude oil
Energy to make 1 cup in arbitrary units	550	200
Biodegradable	Yes	No
Recyclable	No	Yes

(LCAs		nowieuge and understand	ling of life cycle assessments
			(Total 9 m
ylated	spirit is a useful product m	nade from a mixture of sul	ostances.
table be	elow shows the mass of th	ne substances in a sample	e of methylated spirit.
	Substance	Mass in grams	
	Ethanol	265.5	
	Methanol	23.3	
	Pyridine	3.0	
	Methyl violet	1.5	

3

Percentage = %
ylated spirit contains ethanol and is available cheaply.
ylated spirit also contains:
pyridine which has a very unpleasant smell
methyl violet which makes the mixture purple.
Suggest why pyridine and methyl violet are added to ethanol to make methylated spirit
Suggest one use of methylated spirit.
Describe how ethanol is produced from sugar solution.
Give the name of this process.

(f) The diagram below shows part of the displayed formula for ethanol.Complete the diagram.

(1)

(g) Name the gas produced when sodium is added to ethanol.

(1)

(h) Methanol is used to produce methanoic acid.

What type of substance reacts with methanol to produce methanoic acid?

._____

(1)

(Total 11 marks)

This question is about polymers.

(a) Polyesters are produced when monomers join together and lose a small molecule.

Name the small molecule lost.

(1)

(b) Poly(propene) is produced from propene.

Complete the structure of poly(propene) in the equation.

(3)

- poly(propene)
- wool
- a mixture of poly(propene) and wool.

Poly(propene) wears out more slowly than wool.

A mixture of poly(propene) and wool to make carpets is more sustainable than using just poly(propene) or just wool.

Suggest why.			

Polymer fibres are used to make firefighter uniforms.

The table below shows some properties of two polymer fibres.

	Polymer fibres				
Property	Poly(propene)	Polyester			
Density in g/cm ³	0.90	1.38			
Melting point in °C	165	260			
Flame resistance	Poor	Good			
Water absorption	Low	High			

(2)

l)	Evaluate the suitability of poly(propene) and polyester for firefighter uniforms.	
		
		<u> </u>
		۱ Total 10 mark)