(a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

Describe the differences that the graphs show between the two types of cell.
\qquad
\qquad
(b) The diagram shows how bright the torch bulb is for different voltages.

From the point when the voltage of each cell starts to fall, how long will the bulb stay lit:
(i) with the ordinary cell?
\qquad
(ii) with the nicad cell?
\qquad
(c) When the voltage across the bulb falls to half, the current through the bulb falls by less than half. Why is this?
\qquad
\qquad
\qquad
\qquad

2 A 12 V filament bulb is connected to a 12 V power supply.
The graph shows how the current changes after the bulb is switched on.

(a) (i) After 0.10 seconds, the bulb works at its normal brightness.

What is the current through the bulb when it is working at normal brightness?
Current = \qquad A
(ii) The bulb works at normal brightness for 30 seconds before it is switched off.

Calculate the charge that flows through the bulb in the 30 seconds before it is switched off. Give the unit.
\qquad
\qquad
\qquad
Charge = \qquad unit \qquad
(iii) Calculate the energy transferred by the 12 V bulb when it is working at normal brightness for 30 seconds.
\qquad
\qquad
Energy transferred = \qquad J
(b) Between 0.02 seconds and 0.08 seconds, there is an increase in both the resistance and the temperature of the metal filament inside the bulb.

Explain, in terms of the electrons and ions inside the filament, why both the temperature and the resistance increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 (a) Figure 1 shows the inside of a battery pack designed to hold three identical 1.5 V cells.
Figure 1

Which one of the arrangements shown in Figure 2 would give a 4.5 V output across the battery pack terminals \mathbf{T} ?

Figure 2

\square

(b) Figure 3 shows a variable resistor and a fixed value resistor connected in series in a circuit.

Figure 3

Complete Figure 3 to show how an ammeter would be connected to measure the current through the circuit.

Use the correct circuit symbol for an ammeter.
(c) The variable resistor can be adjusted to have any value from 200 ohms to 600 ohms.

Figure 4 shows how the reading on voltmeter $\mathbf{V}_{\mathbf{1}}$ and the reading on voltmeter $\mathbf{V}_{\mathbf{2}}$ change as the resistance of the variable resistor changes.

Figure 4

(i) How could the potential difference of the battery be calculated from Figure 4?

Tick ($\sqrt{ }$) one box.
$9+3=12 \mathrm{~V}$ \square
$9-3=6 \mathrm{~V}$ \square
$9 \div 3=3 V$ \square

Give the reason for your answer.
\qquad
\qquad
(ii) Use Figure 4 to determine the resistance of the fixed resistor, R.

Resistance of $R=$ \qquad Ω

Give the reason for your answer.
\qquad
\qquad
(iii) Calculate the current through the circuit when the resistance of the variable resistor equals 200Ω.
\qquad
\qquad
\qquad
Current $=\ldots \mathrm{A}$

Mark schemes

(a) ordinary cell has higher voltage (normally / at start)
or
ordinary cell 1.3 V nicad 1.2 V (normally / at start)
for 1 mark
voltage of ordinary cell falls more slowly gains 1 mark
(accept ordinary cell lasts longer)
but
as above with relevant quantification e.g. falls to zero in 60 seconds compared to 6 seconds
or
nicad falls to zero 10 times as fast
gains 2 marks
(c) resistance of the lamp / filament changes / increases
gains 1 mark
but
resistance of the lamp / filament decreases
gains 2 marks
because the temperature of the filament falls / filament cools for 1 mark

2 (a) (i) 1.7
(ii) 51
or
$30 \times$ their (i) correctly calculated

$$
\text { allow } 1 \text { mark for correct substitution i.e. } 1.7=\underline{3}
$$

or their $(i)=\underline{Q}$
30
(b) ions vibrate faster
or
ions vibrate with a bigger amplitude
accept atoms for ions throughout
accept ions gain energy
accept ions vibrate more
ions start to vibrate is insufficient
electrons collide more (frequently) with the ions
or
(drift) velocity of electrons decreases
electrons start to collide is insufficient
there are more collisions is insufficient, unless both electrons and ions are implied

3 (a) $3^{\text {rd }}$ box from the left ticked

(b) correct symbol drawn in series with other components symbol must have upper case A
(c) (i) $9+3=12 \mathrm{~V}$
reason only scores if this mark scored
pd of battery is shared between the variable resistor and fixed resistor accept $V_{1}+V_{2}=p d$ of the battery accept p.d. is shared in a series circuit accept voltage for p.d.
(ii) 600
reason only scores if this mark scored
p.d. of supply shared equally when resistors have the same value or
ratio of the p.d. is the same as the ratio of the resistance
(iii) 0.015
or
their (c)(i) \div (their (c)(ii) +200) correctly calculated allow 2 marks for correct substitution ie $12=I \times 800$
or
their $(c)(i)=I \times($ their $(c)(i i)+200)$
allow 1 mark for total resistance $=800(\Omega)$ or their $(c)(i i)+200$
or
allow 1 mark for a substitution of $12=I \times 200$
or
their $(c)(i)=I \times 200$
or
alternative method using the graph
$V=3 V(1)$
$3=I \times 200(1)$

