A small torch uses a single cell to make the bulb light up.

1

(a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

Describe the differences that the graphs show between the two types of cell.

(b) The diagram shows how bright the torch bulb is for different voltages.

From the point when the voltage of each cell starts to fall, how long will the bulb stay lit:

- (i) with the ordinary cell?
- (ii) with the nicad cell?

(4)

(3)

 (c) When the voltage across the bulb falls to half, the current through the bulb falls by less than half. Why is this?
(3) (Total 10 marks)
2 A 12 V filament bulb is connected to a 12 V power supply. The graph shows how the current changes after the bulb is switched on.

(a) (i) After 0.10 seconds, the bulb works at its normal brightness.

What is the current through the bulb when it is working at normal brightness?

Current = _____ A

(1)

(ii) The bulb works at normal brightness for 30 seconds before it is switched off.

	Charge = unit
(iii)	Calculate the energy transferred by the 12 V bulb when it is working at normal brightness for 30 seconds.
	Energy transferred = J
Betv the t	veen 0.02 seconds and 0.08 seconds, there is an increase in both the resistance and emperature of the metal filament inside the bulb.
Exp and	ain, in terms of the electrons and ions inside the filament, why both the temperature the resistance increase.

(Total 8 marks)

Figure 1

Which **one** of the arrangements shown in **Figure 2** would give a 4.5 V output across the battery pack terminals **T**?

(b) **Figure 3** shows a variable resistor and a fixed value resistor connected in series in a circuit.

Complete **Figure 3** to show how an ammeter would be connected to measure the current through the circuit.

Use the correct circuit symbol for an ammeter.

(1)

(1)

3

(c) The variable resistor can be adjusted to have any value from 200 ohms to 600 ohms.

Figure 4 shows how the reading on voltmeter V_1 and the reading on voltmeter V_2 change as the resistance of the variable resistor changes.

(i) How could the potential difference of the battery be calculated from Figure 4?

Tick (\checkmark) one box.

Give the reason for your answer.

(ii)	Use Figure 4 to determine the resistance of the fixed resistor, R.		
	Resistance of R =	Ω	
	Give the reason for your answer.		
			(2)
(iii)	Calculate the current through the circuit when the resistance of the variable equals 200 Ω .	resistor	
	Current =	_ A	
		(Total 9 ma	(3) (rks)
		•	,

Mark schemes

1	(a)	ordinary cell has higher voltage (normally / at start) or	
		ordinary cell 1.3V nicad 1.2V (normally / at start) for 1 mark	
		voltage of ordinary cell falls more slowly gains 1 mark	
		(<i>accept</i> ordinary cell lasts longer) but	
		as above with relevant quantification e.g. falls to zero in 60 seconds compared to 6 seconds	
		or nicad falls to zero 10 times as fast gains 2 marks	3
	(b)	(i) answer in range 32-34 (seconds) (inclusive) gains 1 mark	-
		but answer in range 22-24 (seconds) (inclusive) <i>gains 2 marks</i>	
		(ii) 12 (seconds) gains 1 mark	
		but 2 (seconds) gains 2 marks	4
	(c)	resistance of the lamp / filament changes / increases gains 1 mark	
		but resistance of the lamp / filament decreases gains 2 marks	
		because the temperature of the filament falls / filament cools for 1 mark	
			3

(a)

(b)

(ii) 51 or 30 × their (i) correctly calculated

	allow 1 mark for correct substitution i.e. $1.7 = Q$	
	30	
	or their (i) = \underline{Q} 30	2
	coulomb / C	
	do not accept c	
		1
(iii)	612	
	or	
	their (ii) \times 12 correctly calculated	
	their (i) × 360 correctly calculated	
	allow 1 mark for correct substitution i.e. $E = 12 \times 51$	
	or 12 × their (ii)	
	or their (i) × 360	
		2
ions or	vibrate faster	
ions vibrate with a bigger amplitude		
	accept atoms for ions throughout	
	accept ions gain energy	
	accept ions vibrate more	
	ions start to vibrate is insufficient	1
		1
elec	trons collide more (frequently) with the ions	
(drift	t) velocity of electrons decreases	
`	electrons start to collide is insufficient	
	there are more collisions is insufficient, unless both electrons and	
	ions are implied	
		1

[8]

1

3

			1
(b)	corre	ect symbol drawn in series with other components	
		symbol must have upper case A	1
(C)	(i)	9 + 3 = 12V	
		reason only scores if this mark scored	1
		pd of battery is shared between the variable resistor and fixed resistor	
		accept $V_1 + V_2 = pd$ of the battery	
		accept p.d. is shared in a series circuit	
		accept voltage for p.d.	1
	<i></i>		-
	(11)		
		reason only scores if this mark scored	1
		p.d. of supply shared equally when resistors have the same value	
		Or	
		ratio of the p.d. is the same as the ratio of the resistance	1
	(iii)	0.015	
		or their $(c)(i)$: (their $(c)(ii)$ + 200) correctly calculated	
		then $(C)(1) \neq (11)(11) \neq 200)$ conectly calculated	
		and \mathbf{z} marks for correct substitution in $12 = 1 \times 600$	
		their (c)(i) - $1 \times (their (c)(ii) + 200)$	
		allow 1 mark for total resistance = $800(0)$ or their (c)(ii) + 200	
		or	
		allow 1 mark for a substitution of $12 = 1 \times 200$	
		or	
		their (c)(i) = $I \times 200$	
		or	
		alternative method using the graph	
		V = 3 V (1)	
		$3 = 1 \times 200 (1)$	
			3

[9]