1 (a) Draw one line from each circuit symbol to its correct name.

(b) Figure 1 shows three circuits.

The resistors in the circuits are identical.

Each of the cells has a potential difference of 1.5 volts.
Figure 1

Circuit 1

Circuit 2

Circuit 3

(i) Use the correct answer from the box to complete the sentence.

half	twice	the same as

The resistance of circuit 1 is \qquad the resistance of circuit 3.
(ii) Calculate the reading on voltmeter $\mathbf{V}_{\mathbf{2}}$.

$$
\text { Voltmeter reading } \mathbf{V}_{2}=\ldots \quad V
$$

(iii) Which voltmeter, $\mathbf{V}_{\mathbf{1}}, \mathbf{V}_{\mathbf{2}}$ or $\mathbf{V}_{\mathbf{3}}$, will give the lowest reading?

Draw a ring around the correct answer.
$\begin{array}{lll}V_{1} & V_{2} & V_{3}\end{array}$
(c) A student wanted to find out how the number of resistors affects the current in a series circuit.

Figure 2 shows the circuit used by the student.
Figure 2

The student started with one resistor and then added more identical resistors to the circuit.
Each time a resistor was added, the student closed the switch and took the ammeter reading.

The student used a total of 4 resistors.
Figure 3 shows three of the results obtained by the student.
Figure 3

(i) To get valid results, the student kept one variable the same throughout the experiment.

Which variable did the student keep the same?
\qquad
(ii) The bar chart in Figure $\mathbf{3}$ is not complete. The result using 4 resistors is not shown. Complete the bar chart to show the current in the circuit when 4 resistors were used.
(iii) What conclusion should the student make from the bar chart?
\qquad
\qquad

2 (a) Draw a diagram to show how 1.5 V cells should be connected together to give a potential difference of 4.5 V .

Use the correct circuit symbol for a cell.

A student built the circuit shown in the diagram below.

(b) Calculate the total resistance of the circuit in the diagram above.

Use the equation:

$$
\text { resistance }=\frac{\text { potential difference }}{\text { current }}
$$

\qquad
\qquad
\qquad
\qquad
Total resistance $=$ \qquad Ω
(c) The resistance of \mathbf{P} is 3.5Ω.

Calculate the resistance of \mathbf{Q}.
\qquad
\qquad
\qquad
\qquad
Resistance of $\mathbf{Q}=\ldots \Omega$
(d) The student connects the two resistors in the diagram above in parallel.

What happens to the total resistance of the circuit?
Tick one box.

It decreases

It increases

It does not change \square

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

3 (a) The diagram shows the circuit that a student used to investigate how the current through a resistor depends on the potential difference across the resistor.

(i) Each cell provides a potential difference of 1.5 volts.

What is the total potential difference provided by the four cells in the circuit?
\qquad
Total potential difference $=$ \qquad volts
(ii) The student uses the component labelled \mathbf{X} to change the potential difference across the resistor.

What is component \mathbf{X} ?
Draw a ring around your answer.
light-dependent resistor thermistor variable resistor
(1)
(iii) Name a component connected in parallel with the resistor.
(b) The results obtained by the student have been plotted on a graph.

(i) One of the results is anomalous.

Draw a ring around the anomalous result.
(ii) Which one of the following is the most likely cause of the anomalous result? Put a tick (\checkmark) in the box next to your answer.

The student misread the ammeter.

The resistance of the resistor changed.

The voltmeter had a zero error.

(iii) What was the interval between the potential difference values obtained by the student?
\qquad
\qquad
(c) Describe the relationship between the potential difference across the resistor and the current through the resistor.
\qquad
\qquad

4 A student set up the electrical circuit shown in the figure below.

(a) The ammeter displays a reading of 0.10 A .

Calculate the potential difference across the 45Ω resistor.
\qquad
\qquad

$$
\text { Potential difference }=\ldots \mathrm{V}
$$

(b) Calculate the resistance of the resistor labelled \mathbf{R}.
\qquad
\qquad
\qquad
Resistance $=\square \Omega$
(c) State what happens to the total resistance of the circuit and the current through the circuit when switch \mathbf{S} is closed.
\qquad
\qquad
\qquad
\qquad

5 The current in a circuit depends on the potential difference provided by the cells and the total resistance of the circuit.
(a) Figure 1 shows the graph of current against potential difference for a component.

Figure 1

What is the name of the component?
Draw a ring around the correct answer.

$$
\text { diode } \quad \text { filament bulb } \quad \text { thermistor }
$$

(b) Figure 2 shows a circuit containing a 6 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in parallel.
The current in some parts of the circuit is shown.
Figure 2

(i) What is the potential difference across \mathbf{X} ?

Potential difference across $\mathbf{X}=$ \qquad V
(ii) Calculate the resistance of \mathbf{X}.
\qquad
\qquad
Resistance of $\mathbf{X}=$ \qquad Ω
(iii) What is the current in \mathbf{Y} ?

Current in $\mathbf{Y}=$ \qquad A
(iv) Calculate the resistance of \mathbf{Y}.
\qquad
Resistance of $\mathbf{Y}=$ \qquad Ω
(v) When the temperature of resistor \mathbf{X} increases, its resistance increases.

What would happen to the:

- potential difference across \mathbf{X}
- current in \mathbf{X}
- total current in the circuit?

Tick (\checkmark) three boxes.

	Decrease	Stay the same	Increase
Potential difference across \mathbf{X}			
Current in \mathbf{X}			
Total current in the circuit			

Mark schemes

1
(a)

allow 1 mark for each correct line if more than one line is drawn from any symbol then all of those lines are wrong
(b) (i) half
(ii) $3(\mathrm{~V})$
(iii) V_{1}
(c) (i) potential difference / voltage of the power supply
accept the power supply
accept the voltage / volts
accept number of cells / batteries
accept (same) cells / batteries
do not accept same ammeter / switch / wires
(ii) bar drawn - height 1.(00)A
ignore width of bar
allow 1 mark for bar shorter than $3^{r d}$ bar
(iii) as the number of resistors increases the current decreases
(a) correct circuit symbol

3 cells joined in series in correct orientation
e.g.

ignore absence of + symbol
an answer of $7.5(\Omega)$ scores 2 marks
(c) $4.0(\Omega)$ allow their answer to part (b) - 3.5 correctly calculated
(d) it decreases
the current would be higher (for the same p.d.)
reason only scores if correct box is chosen
or
more than one path for charge to flow
allow current for charge
or
total resistance is always less than the smallest individual resistance

3 (a) (i) 6
(ii) variable resistor
(iii) voltmeter
(b) (i) point at 3 V ringed
(ii) The student misread the ammeter.
(iii) 1 (volt) accept every volt
(c) as one increases so does the other
or
directly proportional
or
positive correlation
accept a numerical description, eg when one doubles the other also doubles
(a) $\quad V=0.10 \times 45$
4.5 (V)

1

1

1

1

1

1

1
(v)

Decrease	Stay the same	Increase
	\checkmark	
\checkmark		
\checkmark		

[9]

