

The girl has a mass of 50 kg
(a) Calculate the gravitational potential energy (g.p.e.) of the girl at the top of the ramp.

Use the equation:
g.p.e. $=$ mass $\times$ gravitational field strength $\times$ height
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
$\qquad$
$\qquad$
g.p.e. = $\qquad$ J
(b) The girl has a speed of $7 \mathrm{~m} / \mathrm{s}$ at the bottom of the ramp.

Calculate the kinetic energy of the girl at the bottom of the ramp.
Use the equation:
kinetic energy $=0.5 \times$ mass $\times(\text { speed })^{2}$
$\qquad$
$\qquad$
Kinetic energy = $\qquad$ J
(c) Not all of the g.p.e. has been transferred to kinetic energy.

Which two statements explain why?
Tick two boxes.

Some energy is wasted.


The mass of the girl is too low. $\square$

The ramp is not high enough.

The g.p.e. of the girl is not zero.


The speed of the girl is too great. $\square$
(d) Explain how lubricating the wheels of the skateboard can increase the speed of the girl.

Use ideas about energy in your explanation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

2 The figure below shows a rollercoaster.


The rollercoaster car is raised a vertical distance of 35 m to point $\mathbf{A}$ by a motor in 45 seconds.
The mass of the rollercoaster is 600 kg .
The motor has a power rating of 8000 W .
(a) Calculate the percentage efficiency of the motor.

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Efficiency $=\ldots$ \%
(b) The rollercoaster rolls from point $\mathbf{A}$ to point $\mathbf{B}$, a drop of 35 m .

Calculate the speed of the roller coaster at point $\mathbf{B}$.
Assume that the decrease in potential energy store is equal to the increase in kinetic energy store.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Speed at point $\mathbf{B}=$ $\qquad$ m/s

Figure 1 shows cavity wall insulation being installed in the wall of a house.
Figure 1

(a) Explain how the wall reduces unwanted energy transfers.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The cavity insulation was tested.

- The heating inside the house was switched off.
- The temperature inside the house was measured every 20 minutes for 2 hours.

The table below shows the results.

| Time in minutes | Temperature in ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: |
| 0 | 25.0 |
| 20 | 20.8 |
| 40 | 17.4 |
| 60 | 14.5 |
| 80 | 12.1 |
| 100 | 10.0 |
| 120 | 8.4 |

Determine the temperature inside the house after 30 minutes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

> Temperature =
$\qquad$ ${ }^{\circ} \mathrm{C}$
(c) Figure 2 shows the gas boiler used to heat the house.

Figure 2


Describe how different energy stores are changed by the boiler.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) To heat the house, the boiler transfers 15 MJ of energy in 10 minutes.

Calculate the power of the boiler.
Write any equation that you use.
$\qquad$
$\qquad$
$\qquad$
Power = $\qquad$ W

A student investigated how the temperature of a metal block changed with time.
An electric heater was used to increase the temperature of the block.
The heater was placed in a hole drilled in the block as shown in Figure 1.
Figure 1


The student measured the temperature of the metal block every 60 seconds.
The table below shows the student's results.

| Time in s | Temperature in ${ }^{\circ} \mathbf{C}$ |
| :--- | :---: |
| 0 | 20.0 |
| 60 | 24.5 |
| 120 | 29.0 |
| 180 | 31.0 |
| 240 | 31.5 |

(a) Complete the graph of the data from the table above on the graph below.

- Choose a suitable scale for the x-axis.
- Label the x-axis.
- Plot the student's results.
- Draw a line of best fit.

Figure 2

(b) The rate of change of temperature of the block is given by the gradient of the graph.

Determine the gradient of the graph over the first 60 seconds.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Gradient = $\qquad$
(c) The metal block had a mass of 1.50 kg

The specific heat capacity of the metal was $900 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

Calculate the change in thermal energy of the metal during 240 seconds.
Use the Physics Equations Sheet.
Give your answer in kilojoules.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Change in thermal energy = $\qquad$ kJ
(d) Another student repeated the investigation.

Give two variables this student would need to control to be able to compare their results with the results in the table above.

1. $\qquad$
2. $\qquad$

Figure 1 shows an exercise device called a chest expander. The three springs are identical.
Figure 1


A person pulls outwards on the handles and does work to stretch the springs.
(a) Complete the following sentence.

When the springs are stretched $\qquad$ energy is stored in the springs.
(b) Figure 2 shows how the extension of a single spring from the chest expander depends on the force acting on the spring.

Figure 2

(i) How can you tell, from Figure 2, that the limit of proportionality of the spring has not been exceeded?
$\qquad$
$\qquad$
(ii) Use data from Figure 2 to calculate the spring constant of the spring. Give the unit.
$\qquad$
$\qquad$
$\qquad$
Spring constant $=$ $\qquad$ Unit $\qquad$
(iii) Three identical resistors joined in parallel in an electrical circuit share the total current in the circuit.

In a similar way, the three springs in the chest expander share the total force exerted.
By considering this similarity, use Figure 2 to determine the total force exerted on the chest expander when each spring is stretched by 0.25 m .
$\qquad$
$\qquad$
Total force $=$ $\qquad$ N
(c) The student in Figure 3 is doing an exercise called a chin-up.

Figure 3


Each time the student does one chin-up he lifts his body 0.40 m vertically upwards.
The mass of the student is 65 kg .
The student is able to do 12 chin-ups in 60 seconds.
Calculate the power developed by the student.
Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Power = $\qquad$ W
(Total 10 marks)

## Mark schemes

1
(a) $E_{p}=50 \times 9.8 \times 4.0$
$\mathrm{E}_{\mathrm{p}}=1960(\mathrm{~J})$
allow an answer rounded to 2000 (J)
allow a maximum of 1 mark if $g=10 \mathrm{~N} / \mathrm{kg}$ is used an answer of 1960 scores 2 marks
(b) $E_{k}=0.5 \times 50 \times 7^{2}$
$E_{k}=1225(\mathrm{~J})$
allow 1200 or 1230 (J)
an answer of 1225 scores 2 marks
(c) some energy is wasted
the g.p.e of the girl is not zero
(d) reduces the amount of friction
do not accept reference to friction between the wheels and the ramp
so more energy is usefully transferred allow less energy is wasted or less heating
greater kinetic energy

2 (a) $600 \mathrm{~kg}=5880 \mathrm{~N}$
power $=\frac{5880 \times 35}{45}$
$=4573.3(\mathrm{~W})$
this step without the previous steps stated gains 3 marks
$\%$ Eff. $=\frac{4573.3}{8000} \times 100$
(b) $\mathrm{gpe}=600 \times 9.8 \times 35$
$=205800$
gpe $=K E=1 / 2 m v^{2}$
$v=\sqrt{\frac{2 \times k E}{m}}$
$=\sqrt{\frac{411600}{600}}$
$=26.2(\mathrm{~m} / \mathrm{s})$
allow 26.2 with no working shown for 6 marks
[11]
3 (a) the wall has two / three layers allow the wall is thick
cavity wall insulation / brick / block has a low thermal conductivity
so less energy is transferred by conduction allow rate of energy transfer is lower ignore any reference to convection and / or radiation
(b)
$T=17.4+\left(\frac{(20.8-17.4)}{2}\right)$
or
$T=20.8+\left(\frac{(20.8-17.4)}{2}\right)$
$\mathrm{T}=19.1\left({ }^{\circ} \mathrm{C}\right)$
an answer in the range 18.5-19.1 scores 2 marks
(c) chemical energy store of the fuel decreases
thermal energy store of the water increases allow kinetic energy store of the water particles increases
thermal energy store of the air / atmosphere increases allow kinetic energy store of the air particles increases
(d) $E=15000000(J)$
$t=600(s)$
$p=\frac{15000000}{600}$
allow a correct substitution of incorrectly / not converted values of $E$ and / or $t$
$\mathrm{P}=25000(\mathrm{~W})$
allow a correct calculation using incorrectly / not converted values of $E$ and / or $t$

4 (a) $x$-axis labelled and suitable scale
points plotted correctly
allow 5 correctly plotted for 2 marks, 3-4 correctly
plotted for 1 mark
allow $\pm 1 / 2$ square
.
line of best fit
(b) $\frac{4.5}{60}$
allow ecf from line of best fit in part (a)
an answer of $0.075\left({ }^{\circ} \mathrm{C} / \mathrm{s}\right)$ scores 2 marks
(c) $\Delta \theta=11.5\left({ }^{\circ} \mathrm{C}\right)$ a calculation using an incorrect temperature scores max 3 marks
$\Delta E=1.50 \times 900 \times 11.5$
$\Delta E=15525(\mathrm{~J})$
$\Delta E=15.525(\mathrm{~kJ})$
an answer of $15.525(\mathrm{~kJ})$ or $15.53(\mathrm{~kJ})$ or $15.5(\mathrm{~kJ})$ scores 4 marks
an answer of 15525 (kJ) scores 3 marks
(d) any two from:

- mass of block*
- size / dimensions of block*
- material of block* *allow same block for 1 mark
- current through heater allow power of heater
- thickness of insulation*
- material of insulation*
*allow same insulation for 1 mark
- time interval
- starting temperature (of block / heater)

5 (a) elastic potential
(b) (i) line is straight
accept line does not curve
1
(ii) 400
allow 1 mark for correct substitution of any pair of numbers correctly taken from the graph e.g. $160=k \times 0.40$
newtons per metre or $\mathrm{N} / \mathrm{m}$
if symbols are used they must be correct
(iii) 300
allow 1 mark for correctly obtaining force on 1 spring $=100 \mathrm{~N}$
(c) 52
allow 2 marks for calculating change in gpe for 1 chin-up as 260 (J) or for 12 chin-ups as 3120 (J)
an answer 4.3 gains 2 marks
allow 1 mark for correct substitution into gpe equation ie gpe $=65 \times$ $10 \times 0.4(\times 12)$
or
correct use of power equation with an incorrect value for energy transferred

