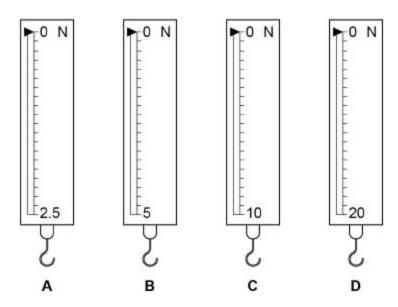
The diagram below shows an ice skater, Skater A.


Write down the equation that links mass, momentum and ve	elocity.
Skater A travels with a velocity of 3.2 m/s and has a momer	ntum of 200 kg m/s
Calculate the mass of Skater A .	
Mass =	kg
Skater A bumps into another skater, Skater B . Skater B is s	stationary.
The skaters move off together in a straight line.	
Explain what happens to the velocity of each of the skaters.	
Use the idea of conservation of momentum.	

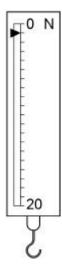
(Total 7 marks)

(a) **Figure 1** shows four newtonmeters.

Each newtonmeter contains a spring.

Figure 1

Which newtonmeter has the spring with the greatest spring constant?


Give a reason for your answer.

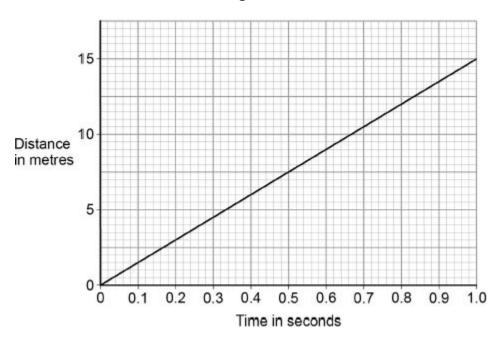
Newtonmeter _____

Reason _____

(b) The newtonmeter in **Figure 2** will give an error when used to make a measurement.

Figure 2

(2)


Name the type of error.			
Describe how this error can be corrected. Type of error			
A student banks a weight on a newtonmater			
A student hangs a weight on a newtonmeter.			
The energy now stored in the spring in the newtonmeter is 4.5×10^{-2} J			
The student then increases the weight on the newtonmeter by 2.0 N			
Calculate the total extension of the spring.			
Spring constant = 400 N/m			
			
Total extension =	m		
	(Total 10 m		

Roding Valley High School

(a) Figure 1 shows the distance-time graph for a car travelling at 15 m/s

Figure 1

When the c	driver is tire	d, his reactio	n time increa	ses from 0.50	O seconds to	0.82 seconds.

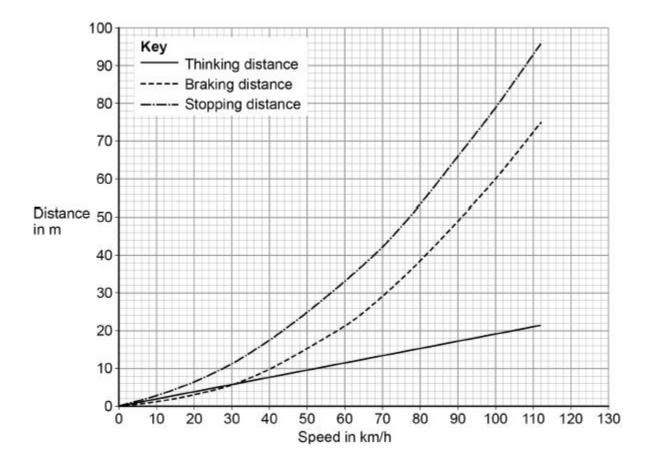
Determine the **extra** distance the car would travel before the driver starts braking.

Distance = _____ m

(b) When the brakes are used, the temperature of the brakes increases.

Explain why. Use ideas about energy in your explanation.

(2)


(2)

(c) A lorry travels 84 m with a constant acceleration of 2.0 m/s² to reach a velocity of 19 m/s
 Calculate the initial velocity of the lorry.
 Use the Physics Equations Sheet.

Initial velocity = _____ m/s

(d) **Figure 2** shows how the thinking distance, braking distance and stopping distance for a car vary with the speed of the car.

Figure 2

(3)

	You should include factors that would affect the gradient of the lines.	
		(Total 13
orc	es are vector quantities.	
a)	What is the difference between a vector quantity and a scalar quantity?	

Figure 1 represents a wooden block being pulled across a surface at a constant speed in a straight line.

The block is in contact with the surface.

The arrow in **Figure 1** represents the tension force in the string pulling the block.

Tension force String
Wooden block
Carpet

(b) Complete **Figure 1** to show the other three forces acting on the block.

Figure 2 is a copy of Figure 1 to help you answer the following question.

Tension force String
Wooden block
Carpet

(3)

Determir	ne the horizontal	and vertical	components	of the tens	ion in the string.
Show the	ese components	on Figure 2			
		Но	rizontal com	ponent =	
			Vertical com	ponent =	
student colle a constant s		ize of the fo	rce required	to pull the b	block across differen
e table belo	w shows the resu	ılts.			
	una of auréasa		Force in N		Mean force in N
יי	pe of surface	Trial 1	Trial 2	Trial 3	Weath force in N
Ca	ardboard	1.4	1.6	1.5	1.5
	arpet	2.6	3.1	3.9	3.2
Ca	aipet				
	lass	0.7	0.8	0.6	0.7
G	•		0.8 X	0.6 5.3	0.7 5.4
G Sa	lass	0.7 5.2			
G Sa	lass	0.7 5.2			
G Sa	lass	0.7 5.2		5.3	

Give three control variables for this investigation.	
1	
2	
3	
	(3)
	(Total 13 marks)

(e)