An electrician is replacing an old electric shower with a new one.

The inside of the old shower is shown in the figure below.

© Michael Priest

(a) The electrician should **not** change the shower unless he switches off the mains electricity supply.

Explain why.

1

(2)

(b) The new shower has a power output of 10 690 W when it is connected to the 230 V mains electricity supply.

The equation which links current, potential difference and power is:

current= power potential difference

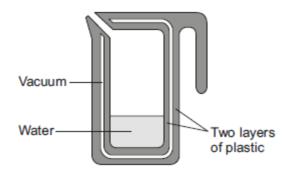
Calculate the current passing through the new shower.

Give your answer to two significant figures.

Current = _____ A

(4)

(c) The new shower has a higher power rating than the old shower.


How does the power of the new shower affect the cost of using the shower?

Give a reason for your answer.

A new design for a kettle is made from two layers of plastic separated by a vacuum. After the water in the kettle has boiled, the water stays hot for at least 2 hours.

The new kettle is shown below.

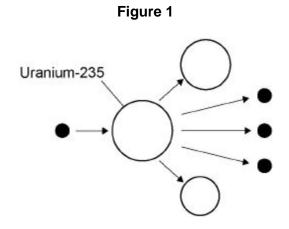
(a) The energy transferred from the water in the kettle to the surroundings in 2 hours is 46 200 J.

The mass of water in the kettle is 0.50 kg.

The specific heat capacity of water is 4200 J/kg °C.

The initial temperature of the water is 100 °C.

Calculate the temperature of the water in the kettle after 2 hours.


Temperature after 2 hours = _____ °C

(b) Calculate the average power output from the water in the kettle to the surroundings in 2 hours.

Average power output = _____ W

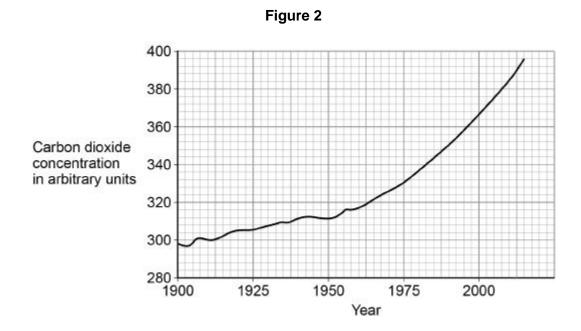
Figure 1 shows the process of nuclear fission.

3

(a) Complete the sentences.

(b)

Choose answers from the box.


gamma rays	light rays	proton	neutron	nucleus	X-rays
During the process	of nuclear fission	, a uranium			
absorbs a	·				
Electromagnetic rad	diation is released	d in the form of		·	
The UK needs at le	ast 25 000 000 k\	N of electrical p	oower at any tin	ie.	
A nuclear power sta	ation has an elect	rical power out	put of 2 400 000) kW	
Calculate how man electrical power.	y nuclear power s	stations are nee	eded to provide	25 000 000 kW (of
1	Number of nuclea	r power station	S =		_

(c) State **two** environmental issues caused by generating electricity using nuclear power stations.

1			
2	 	 	

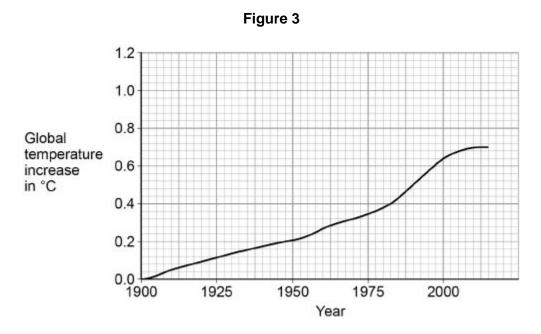

(d) The UK currently generates a lot of electricity by burning natural gas. This process releases carbon dioxide into the atmosphere.

Figure 2 shows how the concentration of carbon dioxide in the atmosphere has changed over the past 115 years.

(2)

Figure 3 shows how the global temperature has changed over the past 115 years.

Give one similarity and one difference between the data in Figure 2 and Figure 3.

(2) (Total 9 marks)

Mark schemes

1	(a)	he may receive an electric shock	
		or he may be electrocuted	
		if he touches the live wire	
	(b)	$10\ 690 = 1 \times 230$	
		I = 10 690 / 230	
		46.478(260) (A) 1	
		46 1 allow 46 (A) with no working shown for 4 marks	
	(c)	cost is higher	
		more energy is used (per second)	[0]
2	(a)	78 (°C) allow 2 marks for correct temperature change ie 22 °C	[8]
		allow 1 mark for correct substitution ie 46 200 = $0.5 \times 4200 \times \theta$	
		$\frac{\mathbf{or}}{\frac{46200}{0.5 \times 4200}} = 0$	
	(b)	3 6.4 (W)	
		allow 2 marks for an answer that rounds to 6.4 allow 1 mark for correct substitution	
		ie 46 200 = P × 7200 an answer of 23 000 or 23 100 or 385 gains 1 mark 2	
			[5]

3	
-	

	neutron	1		
	gamma rays	1		
	in this order only			
(b)	25000000 2400000			
	11	1		
	an answer of 10.4 with no working scores 1 mark	1		
	an answer of 11 scores 2 marks	1		
(C)	 any two from: waste is radioactive allow nuclear waste 			
	 waste has a long half-life allow waste remains dangerous for a long time 			
	 waste is toxic waste needs to be buried allow waste is difficult to dispose of 			
	• risk of catastrophic accidents allow named accident e.g. Fukushima, Chernobyl, Three Mile Island			
	fuel is non-renewable	2		
(d)	similarity: (carbon dioxide concentration and global temperature have) both increased allow they both show a positive correlation	1		
difference: the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off				
	allow carbon dioxide (concentration) increases more quickly than temperature (increase)	1		

[9]

1